Skip to main content
Log in

Reducing Potential Leaching of Phosphorus, Heavy Metals, and Fecal Coliform From Animal Wastes Using Bauxite Residues

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Long-term applications of animal manures to agricultural fields have caused serious environmental concerns over release of excessive nutrients, heavy metals, and fecal coliforms into waterbodies. An alternative is to control nutrient bioavailability of animal manures before their land application. In this study, two types of bauxite residues (red mud and brown mud) were evaluated for their potential use in reducing leachability of phosphorus (P), copper (Cu), and zinc (Zn) as well as fecal coliform and NH3 release from animal manures. Poultry litter and cattle manures collected from production farms were mixed with bauxite residues at mixing rates of 11%, 22%, and 50%. Bauxite residues were effective in suppressing the leaching of water-soluble P, As, Cu, and Zn from animal manures. At 22% mixing rate, brown mud reduced water-extractable P by 40% and 70% from chicken litter and cattle manure, whereas red mud reduced water-extractable P by 27% and 55%, respectively, in five successive extractions. Amending manures with bauxite residues also decreased populations of fecal coliform. Bauxite residues did not increase NH3 release despite its relatively high pH. The results suggest that bauxite residues could be used as a potential amendment for reducing P and other contaminant leaching in animal manures and improve the application of both wastes for beneficial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amer, F., Mahmoud, A. A., & Sabet, V. (1985). Zeta-potential and surface-area of calcium-carbonate as related to phosphate sorption. Soil Science Society of America Journal, 49, 1137–1142.

    Article  CAS  Google Scholar 

  • Bednar, A. J., Garbarino, J. R., Ranville, J. F., & Wilderman, T. R. (2002). Analysis and occurrence of organoarsenicals used in agriculture. Florida: Proceedings of the 23rd Annual American Chemical Society Orland.

    Google Scholar 

  • Bremner, J. M., & Keeney, D. R. (1965). Steam distillation methods for determination of ammonium, nitrate and nitrite. Analytica Chimica Acta, 32, 485–495.

    Article  CAS  Google Scholar 

  • Brunori, C., Cremisini, C., D'Annibale, L., Massanisso, P., Pinto, V., & Torricelli, L. (2005a). A kinetic study of trace element leachability from abandoned mine-polluted soil treated with SS-MSW compost and red mud: comparison with results from sequential extraction. Analytical and Bioanalytical Chemistry, 381, 1347–1354.

    Article  CAS  Google Scholar 

  • Brunori, C., Cremisini, C., Massanisso, P., Pinto, V., & Torricelli, L. (2005b). Reuse of a treated red mud bauxite waste: studies on environmental compatibility. Journal of Hazardous Material B, 117, 55–63.

    Article  CAS  Google Scholar 

  • Carlile, F. S. (1984). Ammonia in poultry houses: a review. World's Poultry Science Journal, 40, 99–113.

    Article  Google Scholar 

  • Chvedov, D., Ostap, S., & Le, T. (2001). Surface properties of red mud particles from potentiometric titration. Colloids and Surfaces A, 182, 131–141.

    Article  CAS  Google Scholar 

  • Cooperband, L. R., & Good, L. W. (2002). Biogenic phosphate minerals in manure: implications for phosphorus loss to surface waters. Environmental Science & Technology, 36, 5075–5082.

    Article  CAS  Google Scholar 

  • Curtis, T. P., Mara, D. D., & Silva, S. A. (1992). Influence of pH, oxygen, and humic substances on ability of sunlight to damage fecal coliforms in waste stabilization pond water. Applied and Environmental Microbiology, 58, 1335–1343.

    CAS  Google Scholar 

  • Dao, T. H. (1999). Co-amendments to modify P extractability and N:P ratio in feedlot manure and composted manure. Journal of Environmental Quality, 28, 1114–1121.

    Article  CAS  Google Scholar 

  • Dao, T. H., Sikora, L. J., Hasasaki, A., & Chaney, R. L. (2001). Manure phosphorus extractability as affected by aluminum- and iron by-products and aerobic composting. Journal of Environmental Quality, 30, 1693–1698.

    Article  CAS  Google Scholar 

  • Déportes, I., Benoit-Guyod, J. L., & Zmirou, D. (1995). Hazard to man and the environment posed by the use of urban waste compost: a review. The Science of the Total Environment, 172, 197–222.

    Article  Google Scholar 

  • Domek, M. J., LeChevallier, M. W., Cameron, S. C., & McFeters, G. A. (1984). Evidence for the role of copper in the injury process of coliform bacteria in drinking water. Applied and Environmental Microbiology, 48, 289–293.

    CAS  Google Scholar 

  • Edwards, D. R., Larson, B. T., & Lim, T. T. (2000). Runoff nutrient and fecal coliform content from cattle manure application to fescue plots. Journal of the American Water Resources Association, 36, 711–721.

    Article  CAS  Google Scholar 

  • Gerba, C. P., & Smith, J. E. (2005). Sources of pathogenic microorganisms and their fate during land application of wastes. Journal of Environmental Quality, 34, 42–48.

    CAS  Google Scholar 

  • Gupta, G., & Kelly, P. (1992). Poultry litter toxicity comparisons from various bioassays. Journal of Environmental Science and Health Part A, A27(4), 1083–1093.

    Article  Google Scholar 

  • Harrell, D. L., & Wang, J. J. (2006). Fractionation and sorption of inorganic phosphorus in Louisiana calcareous soils. Soil Science, 171, 39–51.

    Article  CAS  Google Scholar 

  • Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A, 146, 359–374.

    Article  CAS  Google Scholar 

  • Hossner, L. R. (1996). Dissolution for total elemental analysis. In D. L. Sparks (Ed.), Methods of soil analysis: chemical methods, Part 3 (pp. 49–64). Madison, WI, USA: ASA–SSSA.

    Google Scholar 

  • Hsu, P. H. (1976). Comparison of iron (III) and aluminum in precipitation of phosphate from solution. Water Research, 10, 903–907.

    Article  CAS  Google Scholar 

  • Jackson, B. P., Bertsch, P. M., Cabrera, M. L., Camberato, J. J., Seaman, J. C., & Wood, C. W. (2003). Trace element speciation in poultry litter. Journal of Environmental Quality, 32, 535–540.

    Article  CAS  Google Scholar 

  • Jamieson, R. C., Gordon, R. J., Sharples, K. E., Stratton, G. W., & Madani, A. (2002). Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review. Canadian Biosystems Engineering, 44, 11–19.

    Google Scholar 

  • Jana, S., & Bhattacharya, D. N. (1988). Effect of heavy metals on growth population of a fecal coliform bacterium Escherichia coli in aquatic environment. Water, Air, and Soil Pollution, 38, 251–254.

    CAS  Google Scholar 

  • Kirchmann, H., & Witter, E. (1989). Ammonia volatilization during aerobic and anaerobic manure decomposition. Plant and Soil, 115, 35–41.

    Article  CAS  Google Scholar 

  • Koopmans, G. F., Chardon, W. J., & McDowell, R. W. (2007). Phosphorus movement and speciation in a sandy soil profile after long-term animal manure application. Journal of Environmental Quality, 36, 305–315.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York, NY: Wiley.

    Google Scholar 

  • Liu, Y., Lin, C., & Wu, Y. (2007). Characterization of red mud derived from a combined Bayer process and bauxite calcinations method. Journal of Hazardous Materials, 146, 255–261.

    Article  Google Scholar 

  • Lombi, E., Hamon, R. E., Wieshammer, G., McLaughlin, M. J., & McGrath, S. P. (2004). Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. Journal of Environmental Quality, 33, 902–910.

    Article  CAS  Google Scholar 

  • Menzies, N. W., Fulton, I. M., & Morrell, W. J. (2004). Seawater neutralization of alkaline bauxite residue and implication for revegetation. Journal of Environmental Quality, 33, 1877–1884.

    Article  CAS  Google Scholar 

  • Moore, P. A., Jr., & Miller, D. M. (1994). Decreasing phosphorus solubility in poultry litter with aluminum, calcium, and iron amendments. Journal of Environmental Quality, 23, 325–330.

    Article  CAS  Google Scholar 

  • Moore, P. A., Jr., Daniel, T. C., Edwards, D. R., & Miller, D. M. (1995). Effect of chemical amendments to reduce ammonia volatilization from poultry houses. Journal of Environmental Quality, 24, 293–300.

    Article  CAS  Google Scholar 

  • Moore, P. A., Jr., Daniel, T. C., Gilmour, J. T., Shreve, B. R., Edwards, D. R., & Wood, B. H. (1998). Decreasing metal runoff from poultry litter with aluminum sulfate. Journal of Environmental Quality, 27, 92–99.

    Article  CAS  Google Scholar 

  • North, M., & Bell, D. (1998). Commercial chicken production manual (4th ed.). New York: Van Nostrand Reinhold.

    Google Scholar 

  • N'Dayegayime, A., Roy, R., & Audesse, P. (1997). Nitrogen mineralization and availability in manure composts from Quebec biological farms. Canadian Journal of Soil Science, 77, 345–350.

    Google Scholar 

  • Oeberg, N., & Steinlechner, E. (1996). Red mud and sands handling—new thought on an old problem. Light metals (pp. 67–73). Warrendale, PA: Wayne Hale.

    Google Scholar 

  • Pearson, H. W., Mara, D. D., & Bartone, C. R. (1987). Guidelines for the minimum evaluation of the performance of full-scale wastes stabilization pond systems. Water Research, 21(9), 1067–1075.

    Article  CAS  Google Scholar 

  • Peters, J. M., & Basta, N. T. (1996). Reduction of excessive bioavailable phosphorus in soils by using municipal and industrial wastes. Journal of Environmental Quality, 25, 1236–1241.

    Article  CAS  Google Scholar 

  • Ryan, J., Curtin, D., & Cheema, M. A. (1985). Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils. Soil Science Society of America Journal, 49, 74–76.

    Article  CAS  Google Scholar 

  • SAS Institute (2003). SAS users guide: statistics. Version 9.1. Cary, NC: SAS Institute.

    Google Scholar 

  • Schreve, B. R., Moore, P. A., Jr., Daniel, T. C., Edwards, D. R., & Miller, D. M. (1995). Reductions of P in runoff from field-applied poultry litter using chemical amendments. Journal of Environmental Quality, 24, 106–111.

    Article  Google Scholar 

  • Sharpley, A. N., Daniel, T. C., Sims, J. T., Lemunyon, J., Stevens, R., & Parry, R. (2003). Agricultural phosphorus and eutrophication, 2nd edn. USDA, ARS-149, 44pp.

  • Sims, J. T., & Wolf, D. C. (1994). Poultry waste management: agricultural and environmental issues. Advances in Agronomy, 52, 1–83.

    Article  CAS  Google Scholar 

  • Sommer, S. G., & Hutchings, N. J. (2001). Ammonia emission from field applied manure and its reduction. European Journal of Agronomy, 15, 1–15.

    Article  CAS  Google Scholar 

  • Soupier, M. L., Mostaghimi, S., Yagow, E. R., Hagedorn, C., & Vaughan, D. H. (2006). Transport of fecal bacteria from poultry litter and cattle manures applied to pastureland. Water, Air, and Soil Pollution, 169, 125–136.

    Article  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (2nd ed.). New York, NY: Academic.

    Google Scholar 

  • Summers, R. N., & Pech, J. D. (1997). Nutrient and metal content of water, sediment and soils amended with bauxite residue in the catchment of the Peel Inlet and Harvey Estuary, Western Australia. Agriculture, Ecosystems & Environment, 64, 219–232.

    Article  CAS  Google Scholar 

  • Summers, R. N., Guise, N. R., Smirk, D. D., & Summers, K. J. (1996a). Bauxite residue (red mud) improves pasture growth on sandy soils in Western Australia. Australian Journal of Soil Research, 34, 569–581.

    Article  Google Scholar 

  • Summers, R. N., Smirk, D. D., & Karafilis, D. (1996b). Phosphorus retention and leachates from sandy soil amended with bauxite residue (red mud). Australian Journal of Soil Research, 34, 555–567.

    Article  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of soil analysis: chemical methods, Part 3 (pp. 475–490). Madison, WI, USA: ASA–SSSA.

    Google Scholar 

  • Turco, R. E. (1994). Coliform bacteria. In R. W. Weaver, J. S. Angle, & P. S. Bottmley (Eds.), Methods of soil analysis: microbiological and biochemical properties, Part 2 (pp. 145–158). Madison, WI. USA: ASA–SSSA.

    Google Scholar 

  • Turner, R. E., & Rabalais, N. N. (2003). Linking landscape and water quality in the Mississippi River basin for 200 years. Bioscience, 53, 563–572.

    Article  Google Scholar 

  • Tuveson, R. W., Larson, R. A., & Kagan, J. (1988). Role of clonal carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. Journal of Bacteriology, 170, 4675–4680.

    CAS  Google Scholar 

  • Ulmgren, L. (1975). Swedish experiences in chemical treatment of wastewater. Journal of the Water Pollution Control Federation, 47, 696–703.

    CAS  Google Scholar 

  • USEPA (1984). Overview of solid waste generation, management, and chemical characteristics in bauxite refining and primary aluminum industry. Prepared by Radon Corporation for EPA. Washington, DC: Office of Solid Waste, EPA.

    Google Scholar 

  • USEPA (2000). National water quality inventory. Office of Water, USEPA, Washington, DC. Available at: http://www.epa.gov/305b/2000report/. Accessed April 26, 2009.

  • USEPA (2006). National recommended water quality criteria. Office of Water, USEPA, Washington, DC. Available at: http://epa.gov/waterscience/criteria/wqcriteria.html. Accessed April 26, 2007.

  • Van der Watt, H. V. H., Sumner, M. E., & Cabrera, M. L. (1994). Bioavailability of copper, manganese, and zinc in poultry litter. Journal of Environmental Quality, 23, 43–49.

    Article  Google Scholar 

  • Wang, S., Ang, H. M., & Tade, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign process. Chemosphere, 72, 1621–1635.

    Article  CAS  Google Scholar 

  • Weld, J. L. (2003). Summary of phosphorus indices. Available at http://www.ars.usda.gov/sp2UserFiles/Place/19020500/PhosphorousImages/Summary_Pindices.pdf.

  • Whittaker, C. W., Armiger, W. H., Chichilo, P. P., & Hoffman, W. M. (1955). “Brown mud” from the aluminum industry as a soil liming material. Soil Science Society of America Journal, 19, 288–292.

    Article  CAS  Google Scholar 

  • Whittig, L. D., & Allardice, W. R. (1986). X-ray diffraction techniques. In A. Klute (Ed.), Methods of soil analysis: physical and mineralogical methods, Part 1 (pp. 331–362). Madison, WI, USA: ASA and SSSA.

    Google Scholar 

  • Wong, J. W. C., & Ho, G. E. (1995). Cation exchange behavior of bauxite residues from Western Australia. Journal of Environmental Quality, 24, 461–466.

    Article  CAS  Google Scholar 

  • Zaleski, K. J., Josephson, K. L., Gerba, C. P., & Pepper, I. L. (2005). Survival, growth, and regrowth of enteric indicator and pathogenic bacteria in biosolids, compost, soil, and land applied biosolids. Journal of Residuals Science and Technology, 2, 49–63.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.J., Zhang, H., Schroder, J.L. et al. Reducing Potential Leaching of Phosphorus, Heavy Metals, and Fecal Coliform From Animal Wastes Using Bauxite Residues. Water Air Soil Pollut 214, 241–252 (2011). https://doi.org/10.1007/s11270-010-0420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0420-2

Keywords

Navigation