Skip to main content
Log in

Use of Power Plant Ash to Remove and Solidify Heavy Metals from a Metal-finishing Wastewater

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This laboratory-scale study investigated initially the potential of heavy metal removal from a metal-finishing wastewater using fly and bottom ash from a power plant as coagulants. It was found that the maximum heavy metal content in the ash–sludge mix was obtained at a fly ash-to-bottom ash ratio of 1.5:1 and a stirring time of 3 h, which resulted in heavy metal removal (i.e., Cr, Ni, Cu, Zn, Cd, and Pb) in excess of 99%, with effluent concentrations below the corresponding regulatory standards of Thailand. Furthermore, the feasibility of using fly ash as an admixture to stabilize and solidify the ash–sludge mix generated previously was explored. Results indicated that the stabilization/solidification process can achieve a high level of heavy metal removal efficiency from the ash–sludge mix. The optimum ratio regarding chromium leaching was found to be 1:0.75:0.75 (cement:fly ash:ash–sludge). In addition, the compressive strength and the chromium leaching concentration of the solidified sludge were within acceptable levels for secure landfill disposal and/or use as a construction material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Kharabsheh, A., & Ta’any, R. (2003). Influence of urbanization on water quality deterioration during drought periods at South Jordan. Journal of Arid Environments, 53(4), 619–630. doi:10.1006/jare.2002.1055.

    Article  Google Scholar 

  • Álvarez-Ayuso, E., & Nugteren, H. W. (2007). Purification of chromium(VI) finishing wastewaters using calcined and uncalcined Mg–Al–CO3–hydrotalcite. Water Research, 39(12), 2535–2542. doi:10.1016/j.watres.2005.04.069.

    Article  CAS  Google Scholar 

  • ASTM (American Society for Testing and Materials) (2000a). Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM C305-99. Annual book of ASTM standard 4th section, vol. 0401 (cement; lime; gypsum). Philadelphia: ASTM.

    Google Scholar 

  • ASTM (American Society for Testing and Materials) (2000b). Standard test method for compressive strength of hydraulic cement mortars (using 2-in or 50 mm cube specimens). ASTM C109/C109M-99. Annual book of ASTM standard 4th section, vol. 0401 (cement; lime; gypsum). Philadelphia: ASTM.

    Google Scholar 

  • APHA.AWWA & WEF (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Boonpanaid, C. (1998). Removal of metal ions from aqueous solution by activated carbons and coal fly ash. Master’s Thesis, Faculty of Graduate Studies, Mahidol University, Bangkok, Thailand.

  • Camacho, L. M., & Munson-McGee, S. H. (2006). Anomalous transient leaching behavior of metals solidified/stabilized by pozzolanic fly ash. Journal of Hazardous Materials, B137(1), 144–151. doi:10.1016/j.jhazmat.2005.12.055.

    Article  CAS  Google Scholar 

  • Çiner, F., & Eker, A. (2007). Characterization and chemical treatment of a medium–large scale mixed-organized industrial estate (OIE). Desalination, 211(1–3), 102–112. doi:10.1016/j.desal.2006.03.593.

    Article  CAS  Google Scholar 

  • Conner, J. R., & Hoeffner, S. L. (1998). Critical review of stabilization/solidification technology. Critical Reviews in Environmental Science and Technology, 28(4), 397–462. doi:10.1080/10643389891254250.

    Article  CAS  Google Scholar 

  • DEFRA (Department for Environment, Food and Rural Affairs). (2002). Proposal for the ratification of the UN/ECE heavy metals protocol in the UK. London, England.

  • Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3–4), 377–394. doi:10.1016/S0013-7952(03)00105-4.

    Article  Google Scholar 

  • Fan, Y., Zhang, F. S., Zhu, J., & Liu, Z. (2008). Effective utilization of waste ash from MSW and coal co-combustion power plant: zeolite synthesis. Journal of Hazardous Materials, 153(1–2), 382–388. doi:10.1016/j.jhazmat.2007.08.061.

    Article  CAS  Google Scholar 

  • Fischer, R., Seidel, H., Morgenstern, P., Förster, H. J., Thiele, W., & Krebs, P. (2005). Treatment of process water containing heavy metals with two-stage electrolysis procedure in a membrane electrolysis cell. Engineering in Life Sciences, 5(2), 163–168. doi:10.1002/elsc.200420067.

    Article  CAS  Google Scholar 

  • Goswami, R. K., & Mahanta, C. (2007). Leaching characteristics of residual lateritic soils stabilized with fly ash and lime for geotechnical applications. Waste Management (New York, N.Y.), 27(4), 466–481. doi:10.1016/j.wasman.2006.07.006.

    CAS  Google Scholar 

  • Jang, A., & Kim, I. S. (2000). Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash. Minerals Engineering, 13(14–15), 1659–1662. doi:10.1016/S0892-6875(00)00151-5.

    Article  CAS  Google Scholar 

  • Kilinçkale, F., Ayhan, S., & Apak, R. (1997). Solidification/stabilization of heavy metal-loaded red muds and fly ashes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 69(2), 240–246. doi:10.1002/(SICI)1097-4660(199706)69:2<240::AID-JCTB703>3.0.CO;2-2.

    Article  Google Scholar 

  • Malviya, R., & Chaudhary, R. (2006). Factors affecting hazardous waste solidification/stabilization: a review. Journal of Hazardous Materials, B137(1), 267–276. doi:10.1016/j.jhazmat.2006.01.065.

    Article  CAS  Google Scholar 

  • MOI (Ministry of Industry). (1996). Notification of the Ministry of Industry no. 2 B.E. 2539 issue under the Factory Act B.E. 2535: Industrial effluent standards. Bangkok, Thailand.

  • MOI (Ministry of Industry). (1997). Announcement of the Ministry of industry vol. 6 B.E. issue under the Factory Act B.E. 2535: Criteria and processes for treatment and disposal of hazardous wastes. Bangkok, Thailand.

  • Otal, E., Vilches, L. F., Moreno, N., Querol, X., Vale, J., & Fernández-Pereira, C. (2005). Application of zeolised coal fly ashes to the depuration of liquid wastes. Fuel, 84(11), 1440–1446. doi:10.1016/j.fuel.2004.08.030.

    Article  CAS  Google Scholar 

  • Pereira, C. F., Rodriguez-Pinero, M., & Vale, J. (2001). Solidification/stabilization of electric arc furnace dust using coal fly ash analysis of the stabilization process. Journal of Hazardous Materials, B82(2), 183–195. doi:10.1016/S0304-3894(00)00359-9.

    Article  Google Scholar 

  • Peris, M., Recatalá, L., Micó, C., Sánchez, R., & Sánchez, J. (2008). Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region. Water, Air, and Soil Pollution, 192(1–4), 25–37. doi:10.1007/s11270-008-9631-1.

    Article  CAS  Google Scholar 

  • Qian, G., Cao, Y., Chui, P., & Tay, J. (2006). Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Journal of Hazardous Materials, B129(1–3), 274–281. doi:10.1016/j.jhazmat.2005.09.003.

    Article  CAS  Google Scholar 

  • Rawat, M., Moturi, M. C. Z., & Subramanian, V. (2003). Inventory compilation and distribution of heavy metals in wastewater from small-scale industrial areas of Delhi, India. Journal of Environmental Monitoring, 5(6), 906–912. doi:10.1039/b306628b.

    Article  CAS  Google Scholar 

  • Reeve, D. J. (2007). Environmental improvements in the metal finishing industry. Journal of Cleaner Production, 15(8–9), 756–763. doi:10.1016/j.jclepro.2006.06.013.

    Article  Google Scholar 

  • Rungsipanadorn, C. (2003). Stabilization/solidification of chrome–tanning sludge using cement and rice husk ash. Master’s Thesis, Faculty of Graduate Studies, Mahidol University, Bangkok, Thailand.

  • Silveira, B., Dantas, A., Blasques, J., & Santos, R. (2003). Effectivenesss of cement-based systems for stabilization and solidification of spent pot inner inorganic fraction. Journal of Hazardous Materials, B98(1–3), 183–190. doi:10.1016/S0304-3894(02)00317-5.

    Article  CAS  Google Scholar 

  • Singh, B. K., & Rawat, N. S. (1994). Comparative sorption kinetic studies of phenolic compounds on fly ash and impregnated fly ash. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 61(1), 57–65. doi:10.1002/jctb.280610109.

    Article  CAS  Google Scholar 

  • Singh, T. S., & Pant, K. K. (2006). Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. Journal of Hazardous Materials, B131(1–3), 29–36. doi:10.1016/j.jhazmat.2005.06.046.

    Article  CAS  Google Scholar 

  • Sophia, A. C., & Swaminatha, K. (2005). Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste. Chemosphere, 58(1), 75–82. doi:10.1016/j.chemosphere.2004.09.006.

    Article  CAS  Google Scholar 

  • Swarnalatha, S., Arasakumari, M., Gnanamani, A., & Sekaran, G. (2006). Solidification/stabilization of thermally-treated toxic tannery sludge. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 81(7), 1307–1315. doi:10.1002/jctb.1539.

    Article  CAS  Google Scholar 

  • Taylor, M. P., & Kesterton, R. G. H. (2002). Heavy metal contamination of an arid environment: Gruben River, Namibia. Geomorphology, 42(3), 311–327. doi:10.1016/S0169-555X(01)00093-9.

    Article  Google Scholar 

  • USEPA (United States Environmental Protection Agency). (1986). Federal Register, Toxicity Characteristics Leaching Procedure (TCLP), 40 CFR, vol. 50, no. 286. Appendix, 2(Part 268), 406–943.

  • Wagner, T. (2004). Hazardous waste: evolution of a national environment problem. Journal of Policy History, 16(4), 306–311. doi:10.1353/jph.2004.0024.

    Article  Google Scholar 

  • Wang, S., Soudi, M., Li, L., & Zhu, Z. H. (2006). Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials, B133(1–3), 243–251. doi:10.1016/j.jhazmat.2005.10.034.

    Article  CAS  Google Scholar 

  • Zhang, H., & Shan, B. (2008). Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze–Huaihe region, China. The Science of the Total Environment, 399(1–3), 113–120. doi:10.1016/j.scitotenv.2008.03.036.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Centre for Environmental Health, Toxicology and Management of Chemicals (ETM) and the Science & Technology Post Education and Research Development Office (PERDO) of the Ministry of Education, Bangkok, Thailand. The authors also wish to thank the Mae Moh Power Plant for providing the necessary material and the staff at the Sanitary Engineering Laboratory, Mahidol University, Bangkok, Thailand for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Elefsiniotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fongsatitkul, P., Elefsiniotis, P., Khuhasawan, N. et al. Use of Power Plant Ash to Remove and Solidify Heavy Metals from a Metal-finishing Wastewater. Water Air Soil Pollut 203, 147–154 (2009). https://doi.org/10.1007/s11270-009-9998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-9998-7

Keywords

Navigation