Skip to main content
Log in

Increasing the Knowledge of Heavy Metal Contents and Sources in Agricultural Soils of the European Mediterranean Region

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This paper contributes to increase the knowledge of the contents and sources of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) to agricultural soils in Castellón province (Spain), a representative area of the European Mediterranean region. The surface horizons of 77 agricultural soils under vegetable crops were sampled and heavy metals were analysed by atomic absorption spectroscopy (AAS) after microwave extraction using the USEPA 3051A method. Mean heavy metal contents were similar to those obtained in other areas of this region. However, heavy metal contents (e.g. Cr, Pb) in some soils were above the maximum limit set in the 86/278/CEE Directive. Multivariate analysis (correlation analysis and principal component analysis – PCA) was performed so as to identify the sources of heavy metals to soils. Co, Fe and Ni were highly correlated amongst them (r > 0.800; p < 0.01), whereas Cr and Mn were less correlated with Co, Fe and Ni (r > 0.500; p < 0.01). Other relationships among heavy metals (i.e. Cu, Pb and Zn) were also identified, although correlation coefficients were not so high as those among Co, Fe and Ni (r < 0.500; p < 0.01). Contents of Co, Fe, Mn and Ni were interpreted to be mainly associated with parent rocks corresponding to the first principal component (PC1). On the other hand, Cd, Cu, Pb and Zn were interpreted to be mainly related to anthropogenic activities and comprised the second (Pb and Zn) and the third (Cd and Cu) principal components (PC2 and PC3, respectively), designated as anthropogenic components. Remarkably, Cr appears to be related in the study area to both the lithogenic and the anthropogenic components. Lithogenic elements were highly correlated with soil properties. Positive relationships with CEC (r > 0.200; p < 0.05) and clay (r > 0.400; p < 0.01), and negative relationships with carbonates (r > −0.400; p < 0.01) and sand (r > −0.300; p < 0.01) were observed. Anthropogenic elements were less correlated with soils properties, since these elements are generally more mobile because they form more soluble chemical species associated to anthropogenic sources. Particularly, no correlation was found between Cd and Zn and soil properties. These findings extend results achieved in other parts of the region, highlighting the need to set soil quality standards in order to declare soils affected by anthropogenic pollution, particularly in the case of anthropogenic metals such as Cd, Cu and Pb, and also Cr and Zn in some areas. Further knowledge from other areas in this region would improve the basis for proposing such standards at regional level, which is a priority objective in Europe according to the European Thematic Strategy for Soil Protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., & Petrella, F. (2002). Heavy metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere, 49, 545–557.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. New York: Springer.

    Google Scholar 

  • Alloway, B. J., & Jackson, A. P. (1991). The behaviour of heavy metals in sewage sludge-amended soils. The Science of the Total Environment, 100, 151–176.

    Article  CAS  Google Scholar 

  • Andreu, V., & Gimeno, E. (1996). Total content and extractable fraction of cadmium, cobalt, copper, nickel, lead, and zinc in calcareous orchard soils. Communications in Soil Science and Plant Analysis, 27, 2633–2648.

    Google Scholar 

  • Boluda, R., Andreu, V., Pons, V., & Sánchez, J. (1988). Contenido de metales pesados (Cd, Co, Cr, Cu, Ni, Pb y Zn) en suelos de la comarca La Plana de Requena-Utiel (Valencia). Anales de Edafología y Agrobiología, 47, 1485–1502.

    Google Scholar 

  • Campos, E. (1997) Estudio de la contaminación y fraccionamiento químico de metales pesados en suelos de la vega de Granada. PhD thesis. Granada: Facultad de Farmacia, Universidad de Granada.

  • CAPA (2003). Dades bàsiques del sector agrari Valencià. Octubre 2003, from Generalitat Valenciana, Conselleria d’Agricultura, Pesca i Alimentació Web site: http://www.agricultura.gva.es/publicaciones/revistas/21_dades2003.pdf.

  • Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27, 1294–1300.

    CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality, 28, 1173–1181.

    CAS  Google Scholar 

  • Coccossis, H. N. (1991). Historical land use changes: Mediterranean regions in Europe. In F. M. Brower, A. Thomas, & M. J. Chadwick (Eds.) Land use changes in Europe: Processes of change, environmental transformations and future patterns (pp. 441–461). Dortrecht: Kluwer.

    Google Scholar 

  • Cuadrado, C., Kumpulainen, J., & Moreiras, O. (1995). Contaminants and nutrients in total diets in Spain. European Journal of Clinical Nutrition, 49, 767–778.

    CAS  Google Scholar 

  • Doner, H. E. (1978). Chloride as a factor in mobilities of Ni(II), Cu(II) and Cd(II) in soil. Soil Science Society of America Journal, 42, 882–885.

    Article  CAS  Google Scholar 

  • Doran, J. W., & Parkin, T. B. (1996). Quantitative indicators of soil quality: A minimum data set. In J. W. Doran, & T. D. Parkin (Eds.) Methods for assessing soil quality. SSSA Special Publication 49. Madison, WI: Soil Science Society of America.

    Google Scholar 

  • EC (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture pp. 6–12. Brussels: European Commission, Official Journal of the European Communities L181.

    Google Scholar 

  • EC (2002). Communication of 16 April 2002 from the Commission to the Council, the European parliament, the economic and social committee and the committee of the regions: Towards a thematic strategy for soil protection. Brussels: European Commission.

    Google Scholar 

  • Escrig, I., & Morell, I. (1996). Origen y comportamiento de Cd, Cr, Cu, Pb y Zn en el subsistema acuífero de la Plana de Castellón. Estudios Geológicos, 52, 259–268.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Groom, C., Parker, J., & Teller, A. (1995). Agriculture. In D. Stanners, & P. Bourdeau (Eds.) Europe’s environment. The Dobris assessment (pp. 447–463). Copenhagen: European Environment Agency.

    Google Scholar 

  • Gupta, U. C., & Gupta, S. C. (1998). Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Communications in Soil Science and Plant Analysis, 29, 1491–1522.

    CAS  Google Scholar 

  • Gzyl, J. (1999). Soil protection in Central and Eastern Europe. Journal of Geochemical Exploration, 66, 333–337.

    Article  CAS  Google Scholar 

  • INE (2007) WWW user survey. Retrieved March 15, from http://www.ine.es/inebmenu/menu6_agr.htm.

  • IVE (2006). WWW user survey. http://www.ive.infocentre.gva.es.

  • Jinadasa, K. B. P. N., Milham, P. J., Hawkins, C. A., Cornish, P. S., Williams, P. A., Kaldor, C. J., et al. (1997). Survey of Cadmium levels in vegetables and soils of Greater Sydney, Australia. Journal of Environmental Quality, 26, 924–933.

    CAS  Google Scholar 

  • Kauffman, G. B. (1997). Victor Moritz Goldschmidt (1888–1947): A tribute to the founder of modern geochemistry on the fiftieth anniversary of his death. The Chemical Educator, 2, 1–26.

    Google Scholar 

  • López-Arias, M., & Grau-Corbí, J. M. (2004). Metales pesados, materia orgánica y otros parámetros de la capa superficial de los suelos agrícolas y de pastos de la España peninsular. II. Madrid: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Educación y Ciencia.

    Google Scholar 

  • Lucho-Constantino, C. A., Álvarez-Suárez, M., Beltrán-Hernández, R. I., Prieto-García, F., & Poggi-Varaldo, H. M. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environment International, 31, 313–323.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Tan, F., & Harris, W. G. (1997). Concentrations and distributions of eleven metals in Florida soils. Journal of Environmental Quality, 26, 769–775.

    CAS  Google Scholar 

  • Madrid, L., Diaz-Barrientos, E., Reinoso, R., & Madrid, F. (2004). Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. European Journal of Soil Science, 55, 209–217.

    Article  CAS  Google Scholar 

  • MAPA (1994). Métodos oficiales de análisis de suelos y aguas para riegos. In (Ed.) Tomo III. Métodos oficiales de análisis (pp. 205–324). Madrid: Secretaria General Técnica, Ministerio de Agricultura, Pesca y Alimentación.

  • Marín, A., Alonso-Martirena, J. I., Andrades, M., & Pizarro, C. (2000). Contenido de metales pesados en suelos de viñedo de la D.O.Ca Rioja. Edafología, 7, 351–357.

    Google Scholar 

  • Micó, C., Peris, M., Sánchez, J., & Recatalá, L. (2006a). Heavy metal contents in agricultural soils of a Mediterranean semiarid area: The Segura river valley (Alicante, Spain). Spanish Journal of Agricultural Research, 4, 363–372.

    Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006b). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  CAS  Google Scholar 

  • Mortvedt, J. J. (1996). Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Research, 43, 55–61.

    Article  Google Scholar 

  • Nasreddine, L., & Parent-Massin, D. (2002). Food contamination by metals and pesticides in the European Union. Should we worry? Toxicology Letters, 127, 29–41.

    Article  CAS  Google Scholar 

  • Navas, A., & Machín, J. (2002). Spatial distribution of heavy metals and arsenic in soils of Aragón (northeast Spain): Controlling factors and environmental implications. Applied Geochemistry, 17, 961–973.

    Article  CAS  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 311, 205–219.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1990). Global metal pollution. Poisoning the biosphere? Environment, 32, 28–33.

    Google Scholar 

  • Oliver, M. A. (1997). Soil and human health: A review. European Journal of Soil Science, 48, 573–592.

    Article  CAS  Google Scholar 

  • Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., & Navarro-Hervás, C. (2002). Proposed reference values for heavy metals in calcaric fluvisols of the huerta de Murcia (SE Spain). In A. Faz, R. Ortiz, & A. R. Mermut (Eds.) Sustainable use and management of soils in arid and semiarid regions (pp. 495–496). Cartagena: Quadema Editorial.

    Google Scholar 

  • Peris, M. (2005). Estudio de los metales pesados en suelos bajo cultivos hortícolas de la provincia de Castellón. PhD thesis. Valencia: Universitat de València, Centro de Investigaciones sobre Desertificación.

  • Pinamonti, F., Stringari, G., Gasperi, F., & Zorzi, G. (1997). The use of compost: Its effects on heavy metal levels in soil and plants. Resources, Conservation and Recycling, 21, 129–143.

    Article  Google Scholar 

  • Pomares, F., Estela, M., Tarazona, F., Sala, M. O., & Canet, R. (2000). Sociedad Española de Agricultura Ecológica. In Actas de III Congreso de la Sociedad Española de Agricultura Ecológica: Una alternativa para el mundo rural del tercer milenio pp. 247–252. Valencia: Sociedad Española de Agricultura Ecológica-SEAE.

    Google Scholar 

  • Recatalá, L., Ive, J. R., Baird, I. A., Hamilton, N., & Sánchez, J. (2000). Land-use planning in the Valencian Mediterranean Region: Using LUPIS to generate issue relevant plans. Journal of Environmental Management, 59, 169–184.

    Article  Google Scholar 

  • Recatalá, L., Micó, C., Sánchez, J., & Boluda, R. (2001). Approaches for characterising contaminated sites: an analysis considering the role of soil. In Y. Villacampa, C. A. Brebbia, & J. L. Usó (Eds.) Ecosystems and sustainable development (pp. 347–356). Southampton: Wessex Institute of Technology.

    Google Scholar 

  • Rodríguez-Martín, J. A., López-Arias, M., & Grau-Corbí, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution, 144, 1001–1012.

    Article  CAS  Google Scholar 

  • Roig, A. F., López, F. J., Serrano, R., & Hernández, F. (1997). An assessment of heavy metals and boron contamination in workplace atmospheres from ceramic factories. The Science of the Total Environment, 201, 225–234.

    Article  Google Scholar 

  • Ross, S. M. (1994). Sources and forms of potentially toxic metals in soil–plant systems. In S. M. Ross (Ed.) Toxic metals in soil–plant systems (pp. 3–25). Chichester: Wiley.

    Google Scholar 

  • Sánchez-Camazano, M., Sánchez-Martín, M. J., & Lorenzo, L. F. (1998). Significance of soil properties for content and distribution of cadmium and lead in natural calcareous soils. The Science of the Total Environment, 218, 217–226.

    Article  Google Scholar 

  • Stalikas, C. D., Pilidis, G. A., & Tzouwara-Karayanni, S. M. (1999). Use of a sequential extraction scheme with data normalisation to assess the metal distribution in agricultural soils irrigated by lake water. The Science of the Total Environment, 236, 7–18.

    Article  CAS  Google Scholar 

  • Tiller, K. G. (1989). Heavy metals in soils and their environmental significance. Advances in Soil Science, 9, 113–142.

    Google Scholar 

  • USDA (1996). National soil survey handbook. Title 430-VI, Part 647. Washington, DC: Soil Survey Staff, Natural Resources Conservation Service, US Department of Agriculture, Government Printing Office.

    Google Scholar 

  • USEPA (1998). Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils and oils. Washington, DC: USEPA.

    Google Scholar 

  • Van Camp, L., Bujarrabal, B., Gentile, A. R., Jones, R. J. A., Montanarella, L., Olazábal, C., et al. (2004). Reports of the technical working groups established under the Thematic Strategy for Soil Protection. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Webber, J. (1981). Trace metals in agriculture. In N. W. Lepp (Ed.) Effect of heavy metal pollution on plants. Metals in the environment (vol. 2, (pp. 159–184)). Englewood: Applied Science.

    Google Scholar 

  • Weber, J., & Karczewska, A. (2004). Biogeochemical processes and the role of heavy metals in the soil environment. Geoderma, 122, 105–107.

    Article  Google Scholar 

  • Wei, Y. L., Shyu, H. M., & Joehuang, K. L. (1997). Comparison of microwave vs. Hot-plate digestion for nine real-world river sediments. Journal of Environmental Quality, 26, 764–768.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Valencian Ministry of Agriculture, Fisheries and Food (Generalitat Valenciana) for financial support (contract GV-CAPA00-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Peris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peris, M., Recatalá, L., Micó, C. et al. Increasing the Knowledge of Heavy Metal Contents and Sources in Agricultural Soils of the European Mediterranean Region. Water Air Soil Pollut 192, 25–37 (2008). https://doi.org/10.1007/s11270-008-9631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9631-1

Keywords

Navigation