Skip to main content
Log in

Removal of Cu2+ and Cd2+ from Aqueous Solution by Bentonite Clay Modified with Binary Mixture of Goethite and Humic Acid

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pre-modification of bentonite clay with goethite, humic acid, and a binary mixture of goethite and humic acid reagents increased its cation exchange capacity from 95 to 105.32, 120.4, and 125.8 meq/100 g of bentonite clay, respectively. The effective pre-modification of bentonite clay with goethite, humic acid, and goethite–humic acid reagents was confirmed from their Fourier transform infrared spectra which suggested that modification was effective on the AlAlOH and Si–O sites for goethite and humic acid modification and AlAlOH for goethite–humic acid modification. The presence of 0.001 M NaNO3 electrolyte increased the adsorption capacity of bentonite clay. Temperature was observed to favor the adsorption of Cu2+ and Cd2+ onto both the raw and modified bentonite clay samples. The goethite–humic acid-modified bentonite gave the best adsorption capacity of ≈10 and 16 mg/g at 30 and 50°C, respectively, for both metal ions. The inner sphere complexation mechanism was suggested for the adsorption of both metal ions onto the modified adsorbents. Modifying bentonite clay with a binary mixture of goethite and humic acid reduced the selectivity of bentonite clay for either Cu2+ or Cd2+. Preadsorbed goethite and humic acid on bentonite clay will further reduce the mobility of heavy metal ions in soils and in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abate, G., & Masini, J. C. (2005). Influence of pH, ionic strength and humic acid on adsorption of Cd(II) and Pb(II) onto vermiculite. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 262, 33–39.

    Article  CAS  Google Scholar 

  • Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., & Mentasti, E. (2003). Adsorption of heavy metals on Na-montmorillonite: effect of pH and organic substances. Water Research, 37, 1619–1627.

    Article  CAS  Google Scholar 

  • Adebowale, K. O., Unuabonah, E. I., & Olu-Owolabi, B. I. (2006). The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. Journal of Hazardous Materials, B134, 130–139.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soil. Hoboken: Wiley.

    Google Scholar 

  • Al-Qunaibit, M. H., Mekhemer, W. K., & Zaghloul, A. A. (2005). The adsorption of Cu(II) ions on bentonite—a kinetic study. Journal of Colloid and Interface Science, 283, 316–321.

    Article  CAS  Google Scholar 

  • Arpa, C., Say, R., Satiroghu, N., Bektas, S., Yürüm, Y., & Genc, Ö. (2000). Heavy metal removal from aquatic systems of Northern Anatolian Smectites. Turkish Journal of Chemistry, 24, 209–215.

    CAS  Google Scholar 

  • Bell, C. F. (1977). Principles and applications of metal chelation. Oxford: Clarendon.

    Google Scholar 

  • Bordas, F., & Bourg, A. (2001). Effect of solid/liquid ratio on the mobilization of Cu, Pb, Cd and Zn from polluted river sediment. Water, Air, and Soil Pollution, 128, 391–400.

    Article  CAS  Google Scholar 

  • Buffle, J. (1988). Complexation reactions in aquatic systems: an analytical approach. Chichester: Ellis Horwood.

    Google Scholar 

  • Caglar, B., Afsin, B., Tabak, A., & Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal, 149(1–3), 242–248.

    Google Scholar 

  • Chapman, H. D. (1965). Cation-exchange capacity. In C. A. Black (ed.), Methods of soil analysis - Chemical and microbiological properties. Agronomy 9: 891–901.

  • Chen, C. L., & Wang, X. K. (2006). Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research, 45, 9144–9149.

    Article  CAS  Google Scholar 

  • Chorover, J., Amistadi, M. K., Burgos, W. D., & Hatcher, P. G. (1999). Quinoline sorption on kaolinite–humic acid complexes. Soil Science Society of America Journal, 63, 850–857.

    Article  CAS  Google Scholar 

  • Dean, J. A. (1985). Lange’s handbook of chemistry. New York: McGraw-Hill.

    Google Scholar 

  • El-Eswed, B., & Khalili, F. (2006). Adsorption of Cu(II) and Ni(II) on solid humic acid from Azraq area, Jordan. Journal of Colloid and Interface Science, 299, 497–503.

    Article  CAS  Google Scholar 

  • Gu, X., & Evans, L. J. (2007). Modelling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto fithian illite. Journal of Colloid and Interface Science, 307, 317–325.

    Article  CAS  Google Scholar 

  • Guzman, M., Celis, R., Hermosin, M. C., Leone, P., Negre, M., & Cornejo, J. (2003). Sorption–desorption of lead (II) and mercury (II) by model associations of soil colloids. Soil Science Society of America Journal, 67, 1378–1387.

    Article  Google Scholar 

  • Hayes, M. H. B., & Swift, R. S. (1978). The chemistry of soil colloids. In D. J. Greenland & M. H. B. Hayes (Eds.), The Chemistry of soil constituents (pp. 179–320). New York: Wiley.

    Google Scholar 

  • Hefne, J. A., Mekhemer, W. K., Alandis, N. M., Aldaye, O. A., & Alajyan, T. (2008). Kinetic and thermodynamic study of the adsorption of Pb (II) from aqueous solution to the natural and treated bentonite. International Journal of Physical Sciences, 3, 281–288.

    Google Scholar 

  • Heidmann, I., Christl, I., & Kretzschmar, R. (2005). Sorption of Cu and Pb to kaolinite–fulvic acid colloids: assessment of sorbent interactions. Geochimica et Cosmochimica Acta, 69, 1675–1686.

    Article  CAS  Google Scholar 

  • Hingston, F. J., Posner, A. M., & Quirk, J. P. (1974). Anion adsorption by goethite and gibbsite II. Desorption of anions from hydrous oxide surfaces. Journal of Soil Science, 25, 16–26.

    Article  CAS  Google Scholar 

  • Hizal, J., & Apak, R. (2006). Modeling of cadmium(II) adsorption on kaolinite-based clays in the absence and presence of humic acid. Applied Clay Science, 32, 232–244.

    Article  CAS  Google Scholar 

  • Inglezakis, V. J., Stylianou, M. A., Gkantzou, D., & Loizidou, M. D. (2007). Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210, 248–256.

    Article  CAS  Google Scholar 

  • Juo, A. S. R., Ayanlaja, S. A., & Ogunwole, J. A. (1976). An evaluation of the cation exchange capacity measurements for soils in the tropics. Communications in Soil Science and Plant Analysis, 7, 751–761.

    Article  CAS  Google Scholar 

  • Kaya, A., & Ören, A. H. (2005). Adsorption of zinc from aqueous solutions to bentonite. J Hazard Mater, 125, 183–189.

    Article  CAS  Google Scholar 

  • Kerndorff, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44, 1701–1708.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., Jackson, M. L., & Syers, J. K. (1976). Adsorption of alkaline earth, transition and heavy Metal cations by hydrous oxide gels of Fe and Al. Soil Science Society of America Journal, 40, 796–799.

    Article  CAS  Google Scholar 

  • Kloprogge, J. T., Evans, R., Hickey, L., & Frost, R. L. (2002). Characterisation and Al-pillaring of smectites from Miles, Queensland (Australia). Applied Clay Science, 20, 157–163.

    Article  CAS  Google Scholar 

  • Liu, A., & González, R. D. (1999). Adsorption/desorption in a system consisting of humic acid, metal ions, and clay minerals. Journal of Colloid and Interface Science, 218, 225–232.

    Article  CAS  Google Scholar 

  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10.

    Article  Google Scholar 

  • Montavon, G., Markai, S., Andres, Y., & Grambow, B. (2002). Complexation studies of Eu(III) with alumina-bound polymaleic acid: effect of organic polymer loading and metal ion concentration. Environmental Science and Technology, 36, 3303–3309.

    Article  CAS  Google Scholar 

  • Naidu, R. N., Bolan, S., Kookana, R. S., & Tiller, K. G. (1994). Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. European Journal of Soil Science, 45, 419–429.

    Article  CAS  Google Scholar 

  • Olson, C. G., Thompson, M. L., & Wilson, M. A. (2000). Phyllosilicates. In M. E. Sumner (Ed.), Handbook of soil science (pp. F77–F168). Boca Raton: CRC.

    Google Scholar 

  • Orsetti, S., Quiroga, M. M., & Andrade, E. A. (2006). Binding of Pb(II) in the system humic acid/goethite at acidic pH. Chemosphere, 65, 2313–2321.

    Article  CAS  Google Scholar 

  • Patel, H. A., Somani, R. S., Bajaj, H. C., & Jasra, R. V. (2007). Synthesis and characterization of organic bentonite using Gujarat and Rajasthan clays. Current Science, 92(7), 1004–1009.

    CAS  Google Scholar 

  • Peacock, C. L., & Sherman, D. M. (2004). Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 68(12), 2623–2637.

    Article  CAS  Google Scholar 

  • Rao, C. N. R., 1963. Organic nitrogen compounds: in Chemical Applications of Infrared Spectroscopy. Academic, New York, 245–281.

  • Salman, M., El-Eswed, B., & Khalili, F. (2007). Adsorption of humic acid on bentonite. Applied Clay Science, 38, 51–56.

    Article  CAS  Google Scholar 

  • Sato, H. (1998). Diffusion behavior of Se(II) and Sm(III) in compacted sodium bentonite. Radiochimica Acta, 82, 173–178.

    CAS  Google Scholar 

  • Schmitt, D., Taylor, H. E., Aiken, G. R., Roth, D. A., & Frimmel, F. H. (2002). Influence of natural organic matter on the adsorption of metal ions onto clay minerals. Environmental Science and Technology, 36(13), 2932–2938.

    Article  CAS  Google Scholar 

  • Sears, G. W. (1956). Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Analytical Chemistry, 28, 1981–1983.

    Article  CAS  Google Scholar 

  • Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, 95, 132–152.

    Article  Google Scholar 

  • Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behaviour of metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition and reaction (2nd ed.). New York: Wiley.

    Google Scholar 

  • Tahir, S. S., & Naseem, R. (2004). Removal of Fe (II) from the wastewater of a galvanized pipe manufacturing industry by adsorption onto bentonite clay. Journal of Environmental Engineering, 73, 1–10.

    Google Scholar 

  • Terdkiatburana, T., Wang, S., & Tade, M. O. (2008). Competition and complexation of heavy metal ions and humic acid on zeolitic MCM-22 and activated carbon. Chemical Engineering Journal, 139, 437–444.

    Article  CAS  Google Scholar 

  • Tsai, S. C., Ouyang, S., & Hsu, C. N. (2001). Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite. Applied Radiation and Isotopes, 54, 209–215.

    Article  CAS  Google Scholar 

  • Undabeytial, T., Nir, S., Rytwo, G., Serban, C., Morillo, E., & Magueda, C. (2002). Modelling adsorption–desorption process of Cu on edge and planar sites of montmorillonite. Environmental Science and Technology, 36, 2677–2683.

    Article  CAS  Google Scholar 

  • Unuabonah, E. I., Olu-Owolabi, B. I., Adebowale, K. O., & Ofomaja, A. E. (2007). Adsorption of lead and cadmium ions from aqueous solutions by tripolyphosphate-impregnated kaolinite clay. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 292, 202–211.

    Article  CAS  Google Scholar 

  • Wang, X. K., Chen, C. L., Du, J. Z., Tan, X. L., Xu, D., & Yu, S. M. (2005). Effect of pH and aging time on the kinetic dissociation of 243Am (III) from humic acid-coated γ-Al2O3: a chelating resin exchange study. Environmental Science and Technology, 39, 7084–7088.

    Article  CAS  Google Scholar 

  • Wang, X. K., Zhou, X., Du, J. Z., Hu, W. P., Chen, C. L., & Chen, Y. X. (2006). Using of chelating resin to study the kinetic desorption of Eu (III) from humic acid–Al2O3 colloid surfaces. Surface Science, 600, 478–483.

    Article  CAS  Google Scholar 

  • Williams, C. J., Aderhold, D., & Edyvean, R. G. J. (1998). Comparison between biosorbents for the removal of metal ions fro aqueous solutions. Water Research, 32, 216–224.

    Article  CAS  Google Scholar 

  • Wu, J. (2000). Effects of soil organics on metal mobility under applied electric fields, Ph.D. thesis. UK: The University of Leeds.

  • Wu, J., West, L. J., & Stewart, D. I. (2002). Effect of humic substances on Cu(II) solubility in kaolin-sand soil. Journal of Hazardous Materials, B94, 223–238.

    Article  Google Scholar 

  • Xu, W., Johnston, C. T., Parker, P., & Agnew, S. F. (2000). Infrared study of water sorption on Na-, Li-, Ca-, and Mg-exchanged (SWy-1 and SAz-1) montmorillonite. Clays and Clay Minerals, 48, 120–131.

    Article  CAS  Google Scholar 

  • Xu, D., Shao, D. D., Chen, C. L., Ren, A. P., & Wang, X. K. (2006). Effect of pH and fulvic acid sorption and complexation of cobalt onto bare and FA bond MX-80 bentonite. Radiochimica Acta, 94(2), 97–102.

    Article  CAS  Google Scholar 

  • Xu, D., Tan, X. L., Chen, C. L., & Wang, X. K. (2008). Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 41(1–2), 37–46.

    Google Scholar 

  • Yong, R. Y., & Mourato, D. (1988). Extraction and characterisation of organics from two Champlain sea surface soils. Canadian Geotechnical Journal, 25, 559–607.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate with thanks the Department of Agronomy, University of Ibadan, Nigeria and the Department of Chemical Sciences, Redeemer’s University, Nigeria, for the use of some equipment for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Olu-Owolabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olu-Owolabi, B.I., Popoola, D.B. & Unuabonah, E.I. Removal of Cu2+ and Cd2+ from Aqueous Solution by Bentonite Clay Modified with Binary Mixture of Goethite and Humic Acid. Water Air Soil Pollut 211, 459–474 (2010). https://doi.org/10.1007/s11270-009-0315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0315-2

Keywords

Navigation