Skip to main content
Log in

Degradation of Prototype Pesticides Submitted to Conventional Water Treatment Conditions: The Influence of Major Parameters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The behavior of several pesticides in aqueous solution, namely bifenthrin, amethrin (pyrethroid insecticides), endosulfan and endosulfan sulfate (organochlorine pesticides), disulfoton, methyl pyrimiphos, and phorate (organophosphorus pesticides), submitted to the conditions typically employed in water treatment stations was investigated. Continuous pesticide depletion was monitored by solid-phase microextraction sampling followed by gas chromatography–mass spectrometry analysis. The influence of major parameters (sodium hypochloride concentration, solution pH, and exposure time to ultraviolet (UV) light) was, thus, adequately established via two complementary approaches: factorial (23, three variables—two levels) and Doehlert designs. Hence, the sodium hypochloride concentration and the solution pH produced distinct effects depending on the pesticide evaluated (for instance, acidic and basic media caused increasing rates of degradation for the organophosphorus/pyrethroid and organochlorine pesticides, respectively). Conversely, higher rates of degradation were achieved for all of the pesticides investigated when increased exposure times to UV radiation were employed. Finally, the exposure time to UV radiation that lead to complete degradation of disulfoton and endosulfan sulfate (organophosphorus and organochlorine pesticides, respectively) in aqueous media under ordinary conditions employed in water treatment stations was established; disulfoton and endosulfan sulfate were completely degraded after 10 and 40 h, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acero, J. L., Benite, F. J., Real, F. J., & Gonzalez, M. (2008). Chlorination of organophosphorus pesticides in natural waters. Journal of Hazardous Materials, 153, 320–328.

    Article  CAS  Google Scholar 

  • Bali, U., Catalkaya, E. C., & Senguel, F. (2003). Photochemical degradation and mineralization of phenol; a comparative study. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances amd Environmental Engineering, A38(10), 2259–2275.

    CAS  Google Scholar 

  • Ballesteros Martín, M. M., Sánchez Pérez, J. A., García Sánchez, J. L., Montes de Oca, L., Casas López, J. L., Oller, I. M., et al. (2008). Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation. Journal of Hazardous Materials, 155(1–2), 342–349.

    Article  Google Scholar 

  • Baxter, R. M., & Carey, J. H. (1983). Evidence for photochemical generation of superoxide ion in humic waters. Nature, 306, 575–578.

    Article  CAS  Google Scholar 

  • Capobiango, H. L. V., & Cardeal, Z. L. (2005). A solid-phase microextraction method for the chromatographic determination of organophosphorus pesticides in fish, potatoes, guava and coffee. Journal of the Brazilian Chemical Society, 16(5), 907–914.

    Article  CAS  Google Scholar 

  • Cardeal, Z. L., & Paes, C. M. C. (2006). Analysis of organophosphorus pesticides in whole milk by solid phase microextraction gas chromatography method. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41(4), 369–375.

    Article  CAS  Google Scholar 

  • Chiron, S., Fernadez-Alba, A. R., & Rodriguez, A. (1997). Pesticide chemical oxidation processes: an analytical approach. TrAC, Trends in Analytical Chemistry, 16(9), 518–527.

    Article  CAS  Google Scholar 

  • Doong, R., & Chang, W. (1997). Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide. Journal of Photochemistry and Photobiology, A: Chemistry, 107(1–3), 239–244.

    Article  CAS  Google Scholar 

  • Duirk, S. E., & Collete, T. W. (2006). Degradation of chlorpyrifos in aqueous chlorine solutions: pathways, kinetics, and modeling. Environmental Science & Technology, 40(2), 546–551.

    Article  CAS  Google Scholar 

  • Fernandez-Alvarez, M., Llompart, M., Lores, M., Garcia-Jares, C., Cela, R., & Dagnac, T. (2008). The photochemical behaviour of five household pyrethroid insecticides and a synergist as studied by photo solid phase microextraction. Analytical and Bioanalytical Chemistry, 388(5–6), 1235–1247.

    Google Scholar 

  • Gratzel, C. K., Jirousek, M., & Gratzel, M. (1990). Decomposition of organophosphorus compounds on photoactivated TiO2 surfaces. Journal of Molecular Catalysis, 60(3), 375–387.

    Article  Google Scholar 

  • Ince, N. H., & Gonenc, D. T. (1997). Treatability of a textile azo dye by UV/H2O2. Environmental Technology, 18(2), 179–185.

    CAS  Google Scholar 

  • Kerzhentsev, M., Guilhard, C., Hermann, J. M., & Pichat, P. (1996). Photocatalytic pollutant removal in water at room temperature: case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid o, o-dimethyl-o-(3-methyl-4-nitro-phenyl) ester). Catalysis Today, 27(1–2), 215–220.

    Article  CAS  Google Scholar 

  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93, 671–698.

    Article  CAS  Google Scholar 

  • Liao, C. H., & Gurol, M. D. (1995). Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environmental Science & Technology, 29(12), 3007–3014.

    Article  CAS  Google Scholar 

  • Liu, Y. H., Liu, Y., Chen, Z. S., Lian, J., Huang, X., & Chung, Y. C. (2004). Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillium lilacinum BP 303. Enzyme and Microbial Technology, 34(3–4), 297–303.

    Article  CAS  Google Scholar 

  • Lunak, S., & Sedlak, P. (1992). Photoinitiated reactions of hydrogen peroxide in the liquid phase. Journal of Photochemistry and Photobiology A: Chemistry, 68(1), 1–33.

    Article  CAS  Google Scholar 

  • Malato, S., Blanco, J., Richter, C., Milow, B., & Maldonado, M. I. (1999). Solar photocatalytic mineralization of commercial pesticides: Methamidophos. Chemosphere, 38(5), 1145–1156.

    Article  CAS  Google Scholar 

  • Masten, S. J., & Davies, H. R. (1994). The use of ozonation to degrade organic contaminants in wastewaters. Environmental Science & Technology, 28(4), A180–A185.

    Article  Google Scholar 

  • Miltner, R. J., Baker, D. B., Speth, T. F., & Fronk, C. A. (1989). Treatment of seasonal pesticides in surface waters. Journal American Water Works Association, 81(1), 43–52.

    CAS  Google Scholar 

  • Oancea, P., & Oncescu, T. (2008). The Photocatalytic degradation of dichlorvos under solar irradiations. Journal of Photochemistry and Photobiology A: Chemistry, 199(1), 8–13.

    Article  CAS  Google Scholar 

  • Pelizzetti, E. (1995). Concluding remarks on heterogeneous solar photocatalysis. Solar Energy Materials and Solar Cells, 38(1–4), 453–457.

    Article  CAS  Google Scholar 

  • Rosenfeldt, E. J., & Linden, K. G. (2007). The ROH-UV concept you characterize the model UV/H2O2 process in natural waters. Environmental Science & Technology, 41(7), 2548–2553.

    Article  CAS  Google Scholar 

  • Saien, J., & Khezrianjoo, S. (2008). Degradation of the fungicide carbezin in aqueous solutions with UV/TiO2 process optimization, kinetcs and toxicity studies. Journal of Hazardous Materials, 157(2–3), 269–276.

    Article  CAS  Google Scholar 

  • Silva, F. C., Carvalho, C. R., & Cardeal, Z. L. (1999). Determination of organophophorus pesticides in water using SPME-GC-MS. Química Nova, 22(2), 197–200.

    CAS  Google Scholar 

  • Tago, K., Yonezawa, S., Ohkouchi, T., Hashimoto, M., & Hayatsu, M. (2006). Purification and characterization of fenitrothion hydrolase from Burkholderia sp. NF 100. Journal of Bioscience and Bioengineering, 101(1), 80–82.

    Article  CAS  Google Scholar 

  • Yu, B., Zeng, J., Cong, L., Zhang, M., Zhang, L., & Chen, X. (2007). Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta, 72(5), 1667–1674.

    Article  CAS  Google Scholar 

  • Zhang, Q., & Pehkonen, S. O. (1999). Oxidation of diazinon by aqueous chloride: kinetics, mechanisms and product studies. Journal of Agricultural and Food Chemistry, 47(4), 1760–1766.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenilda L. Cardeal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, A.G., Costa, L.M., Augusti, R. et al. Degradation of Prototype Pesticides Submitted to Conventional Water Treatment Conditions: The Influence of Major Parameters. Water Air Soil Pollut 211, 427–434 (2010). https://doi.org/10.1007/s11270-009-0311-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0311-6

Keywords

Navigation