Skip to main content
Log in

Phytoextraction of Lead from Soil from a Battery Recycling Site: The Use of Citric Acid and NTA

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phytoextraction is a soil remediation technique involving plants that concentrate heavy metals in their shoots, which may be removed from the area by harvest. The application of synthetic chelants to soil increases metal solubility, and therefore enhances phytoextraction. However, synthetic chelants degrade poorly in soil, and metal leaching poses a threat to human and animal health. The aim of this study is to assess the use of two biodegradable chelants (citric acid and nitrilotriacetic acid (NTA)) for Pb phytoextraction by maize from a soil contaminated by battery-casing disposal. In order to assess the behavior of a non-degradable chelant, ethylenediaminetetraacetic acid (EDTA) was also included in the experiment. The chelants NTA and EDTA were applied to soil pots at rates of 0, 3, 5, 7, and 10 mmol kg−1 of soil. The rates used to citric acid were 0, 5, 10, 15, and 30 mmol kg−1. Maize plants were grown for 72 days and chelants were applied 9 days before harvest. Soil samples were extracted with CaCl2 to assess the Pb solubility after chelants application. The results showed that NTA was more efficient than citric acid to solubilize Pb from soil; however, citric acid promoted higher net removal of Pb (120 mg pot−1) than NTA (57 mg pot−1). Thus, the use of citric acid, a biodegradable organic acid, could be feasible for enhancing the phytoextraction of Pb from the site studied with no environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu, M. F., Abreu, C. A., & Andrade, J. C. (2001). Determinação de fósforo, potássio, cálcio, magnésio, enxofre, cobre, ferro, manganês, zinco, níquel, cádmio, crômio e chumbo em ácido nítrico usando métodos da USEPA. In B. van RAIJ, J. C. Andrade, H. Cantarella & J. A. Quaggio (Eds.), Análise química para avaliação da fertilidade de solos tropicais (pp. 251–261). Campinas: Instituto Agronômico.

    Google Scholar 

  • ATSDR-Agency for Toxic Substances & Disease Registry. (2009). United States Department of Health and Human Services, Priority List of Hazardous Substances [Online WWW]. Available URL: “http://www.atsdr.cdc.gov/cercla/05list.html” [Accessed 07 march 2009].

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soilapplied chelating agents. Environmental Science Technology, 31, 860–865.

    Article  Google Scholar 

  • Chen, H., & Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28.

    Article  CAS  Google Scholar 

  • Chen, Y. X., Lin, Q., Luo, Y. M., He, Y. F., Zhen, S. J., YU, Y. L., et al. (2003). The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50, 807–811.

    Article  CAS  Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária–EMBRAPA. (1997). Manual de Métodos de Análises de solo, Embrapa Comunicação para Transferência de Tecnologia, Brasília.

  • Empresa Brasileira de Pesquisa Agropecuária–EMBRAPA (1999) Manual de análises químicas de solos, plantas e fertilizantes, Embrapa Comunicação para Transferência de Tecnologia, Brasília.

  • Epstein, A. L., Gussman, C. D., Blaylock, M. J., Yermiyahu, U., Huang, J. W., Kapulnik, Y., et al. (1999). EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil, 208, 87–94.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, 989–1003.

    Article  CAS  Google Scholar 

  • Freitas, E. V. S., do Nascimento, C. W. A., Biondi, C. M., Silva, J. P. S., & Souza, A. P. (2009). Dessorção e lixiviação de chumbo em espodossolo tratado com agentes quelantes. Revista Brasileira de Ciência do Solo, 33, 517–525.

    CAS  Google Scholar 

  • Gupta, S. K., Herren, T., Wenger, K., Krebs, R., & Hari, T. (2000). In situ gentle remediation measures for heavy metal-polluted soils. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 303–322). Boca Raton: Lewis.

    Google Scholar 

  • Kos, B., & Lestan, D. (2004). Chelator induced phytoextraction and in situ soil washing of Cu. Environmental Pollution, 132, 333–339.

    Article  CAS  Google Scholar 

  • Krämer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16, 1–9.

    Article  CAS  Google Scholar 

  • Krishnamurti, G. S. R., Cieslinski, G., Huang, P. M., & Van Pees, K. C. J. (1997). Kinectics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. Journal of Environmental Quality, 26, 271–277.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2001). Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.

    Article  CAS  Google Scholar 

  • Meers, E., Hopgood, M., Lesage, E., Vervaeke, P., Tack, F. M. G., & Verloo, M. G. (2004). Enhanced phytoextraction in: Search of EDTA alternatives. International Journal of Phytoremediation, 6, 95–109.

    Article  CAS  Google Scholar 

  • Melo, E. E. C., Nascimento, C. W. A., & Santos, A. C. Q. (2006). Solubilidade, fracionamento e fitoextração de metais pesados após aplicação de agentes quelantes. Revista Brasileira de Ciência do Solo, 30, 1051–1060.

    Google Scholar 

  • Melo, E. E. C., Nascimento, C. W. A., Accioly, A. M. A., & Santos, A. C. Q. (2008). Phytoextraction and fractionation of heavy metals in soil after multiple applications of natural chelants. Scientia Agricola, 65, 61–68.

    Article  Google Scholar 

  • Murakami, M., Ae, N., & Ishikawa, S. (2007). Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environmental Pollution, 145, 96–103.

    Article  CAS  Google Scholar 

  • Nascimento, C. W. A. (2006). Organic acids effects on desorption of heavy metals from a contaminated soil. Scientia Agricola, 63, 276–280.

    Google Scholar 

  • Nascimento, C. W. A., & Xing, B. (2006). Phytoextraction: A review on enhanced metal availability and plant accumulation. Scientia Agricola, 63, 299–311.

    Google Scholar 

  • Nascimento, C. W. A., Amarasiriwardena, D., & Xing, B. (2006). Comparison of natural organic acids and synthetics chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution, 140, 114–123.

    Article  CAS  Google Scholar 

  • Nedwed, T., & Clifford, D. A. (1998). A survey of lead battery recycling sites and soil remediation processes. Waste Manage, 17(4), 257–269.

    Article  Google Scholar 

  • Novozamsky, I., Lexmond, T. M., & Houba, V. J. H. (1993). A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51, 47–58.

    Article  CAS  Google Scholar 

  • Pedron, F., Petruzelli, G., Barbafieri, M., & Tassi, E. (2009). Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere, doi:10.1016/j.chemosphre.2009.01.044.

    Google Scholar 

  • Pueyo, M., Rauret, G., Luck, D., Yli-Halla, M., Muntau, H., Quevauville, P. H., et al. (2004). Assessment of CaCl2, NH4NO3 and NaNO3 extraction procedures for the study of Cd, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504, 217–226.

    Article  CAS  Google Scholar 

  • Quartacci, M. F., Irtelli, B., Baker, A. J. M., & Navari-Izzo, F. (2007). The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere, 68, 1920–1928.

    Article  CAS  Google Scholar 

  • Romkens, P., Bouwman, L., Japenga, J., & Draaima, C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 116, 109–121.

    Article  CAS  Google Scholar 

  • Ruley, A. T., Sharma, N. C., Sahi, S. V., Singh, S. R., & Sajwan, K. S. (2006). Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environmental Pollution, 144, 11–18.

    Article  CAS  Google Scholar 

  • Saifullah, A. E., Meers, B., Qadir, M., Caritat, P., Tack, F. M. G., Du Laing, G., et al. (2009). EDTA-assited Pb phytoextraction. Chemosphere, 74, 1279–1291.

    Article  CAS  Google Scholar 

  • Vassil, A. D., Kapulnik, Y., Raskin, I., & Salt, D. E. (1998). The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology, 117, 447–453.

    Article  CAS  Google Scholar 

  • Wu, L. H., Luo, Y. M., Xing, X. R., & Christie, P. (2004). EDTA enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems & Environment, 102, 307–318.

    Article  CAS  Google Scholar 

  • Zeitouni, C. F., Berton, R. S., & Abreu, C. A. (2007). Fitoextração de cádmio e zinco de um Latossolo vermelho-amarelo contaminado com metais pesados. Bragantia, 66, 649–657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clístenes Williams Araújo do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Araújo, J.d.C.T., do Nascimento, C.W.A. Phytoextraction of Lead from Soil from a Battery Recycling Site: The Use of Citric Acid and NTA. Water Air Soil Pollut 211, 113–120 (2010). https://doi.org/10.1007/s11270-009-0285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0285-4

Keywords

Navigation