Skip to main content
Log in

Effect of Flow Rate, Concentration and Transient—State Operations on the Performance of a Biofilter Treating Xylene Vapors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biological treatment systems such as biofilters offer a potential alternative to the existing physicochemical techniques for the removal of volatile organic compounds from gaseous emissions. In this experimental work, continuous phase biofiltration of xylene vapors were performed in a laboratory scale compost biofilter that was inoculated with a xylene-acclimatized consortium. The performance was assessed by continuously monitoring the removal efficiency (RE) and elimination capacity (EC) of the biofilter at loading rates varying between 2–220 g m−3 h−1. The steady-state removal efficiencies were maintained between 60% and 90% up to a loading rate of 80 g m−3 h−1. The removal efficiency decreased significantly at loading rates higher than 100 g m−3 h−1. The pressure drop values were consistently less and insignificant in affecting the performance of the system. The present study also focuses in evaluating the stability of biofilter during shut down, restart, and shock-loading operations. An immediate restoration of biological activity after few days of starvation indicated their capability to handle discontinuous treatment situations which is more common to industrial biofilters. The sensitiveness of the biofilm to withstand shock loads was tested by abruptly increasing/decreasing the loading rates between 9–55 g m−3 h−1, where, removal efficiencies between 60–90% were achieved. These results prove the resilience of the biomass and the stability of the compost biofilter. Anew, results from kinetic analysis reveal that, steady-state xylene removal in the biofilter can be adequately represented by Michaelis–Menten type kinetics, and the kinetic constants namely, ECmax (120.4 g m−3 h−1) and K s (2.21 g m−3) were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen, E. R., & Phatak, S. (1993). Control of organo-sulfur compound emissions using biofiltration–methyl mercaptans. In: Proceedings of the 86th Annual Meeting and Exhibition of the Air and Waste Manage. Assoc., Pittsburg, PA.

  • Apel, W. A., Dugan, P. R., Weibe, M. R., Johnson, E. G., Wolfram, J. H., & Rogers, R. D. (1995). Bioprocessing of environmentally significant gases and vapors with gas phase bioreactors. In: Emerging technologies in hazardous waste management, ACS Symposium, 518, 411–428.

  • APHA. (1985). In A. E. Greenberg, L. S. Clesceri & A. D. Eaton (Eds.), Standard methods for the examination of water and wastewater (16th ed.). Washington: APHA.

    Google Scholar 

  • Arulneyam, D. (1999). Biodegradation of volatile organic vapours in biofilter. Ph.D Thesis, Submitted to the Dept Chem. Eng., IIT Madras.

  • Arulneyam, D., & Swaminathan, T. (2004). Biodegradation of mixture of VOC’s in a biofilter. Journal of Environmental Science, 16, 30–33.

    CAS  Google Scholar 

  • Bibeau, L., Kiared, K., Brzezinski, R., Viel, G., & Heitz, M. (2000). Treatment of air polluted with xylenes using a bioreactor. Water, Air and Soil Pollution, 118, 377–394.

    Article  CAS  Google Scholar 

  • Chen, Y.-X., Yin, J., & Wang, K.-X. (2005). Long – term operation of biofilters for biological removal of ammonia. Chemosphere, 58, 1023–1030.

    Article  CAS  Google Scholar 

  • Corsi, R. L., & Seed, L. P. (1994). Biofiltration of BTEX contaminated gas streams: Laboratory studies. In: Proceedings of the 87th Annual Meeting and Exhibition of the Air and Waste Manage. Assoc. Cincinnati, Ohio.

  • Cox, H. H. J., & Deshusses, M. A. (2002). Effect of starvation on the performance and re – acclimation of biotrickling filters for air pollution control. Environmental Science and Technology, 36, 3069–3073.

    Article  CAS  Google Scholar 

  • Cox, H. H. J., Moerman, R. E., Van Baalen, S., Van Heiningen, W. N. M., Doddema, H. J., & Harder, W. (1997). Performance of a styrene degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnology and Bioengineering, 53, 259–266.

    Article  CAS  Google Scholar 

  • Delhomenie, M. C., Bibeau, L., Bredin, N., Roy, S., Broussau, S., & Brezezinski, R. (2002). Biofiltration of air contaminated with toluene on a compost based bed. Advances in Environmental Research, 6, 239–254.

    Article  CAS  Google Scholar 

  • Deshusses, M. A. (1994). Biodegradation of mixtures of ketone vapours in biofilters for the treatment of waste air. Ph.D Dissertation submitted to the Swiss Federal Institute of Technology, Zurich, Diss. ETH Nr. 10633.

  • Deshusses, M. A. (1997). Transient behavior of biofilters: Start – up, carbon balances, and interactions between pollutants. Journal of Environmental Engineering, 123, 563–568.

    Article  CAS  Google Scholar 

  • Devinny, J. S., Deshusses, M. A., & Webster, T. S. (1999). Biofiltration for air pollution control. Boca Raton: Lewis.

    Google Scholar 

  • Du Plessis, C. A., Strauss, J. M., & Riedel, K.-H. J. (2001). BTEX catabolism interactions in a toluene acclimatized biofilter. Applied Microbiology and Biotechnology, 55, 122–128.

    Article  Google Scholar 

  • Elmrini, H., Bredin, N., Shareefdeen, Z., & Heitz, M. (2004). Biofiltration of xylene emissions: Bioreactor response to variations in the pollutant inlet concentration and gas flow rate. Chemical Engineering Journal, 100, 149–158.

    Article  CAS  Google Scholar 

  • Ergas, S. J., Kinney, K., Fuller, M. E., & Scow, K. M. (1994). Characterization of a compost biofiltration system degrading dichloromethane. Biotechnology and Bioengineering, 44, 1048–1054.

    Article  CAS  Google Scholar 

  • Gabaldon, G., Martinez-Soria, V., Martin, M., Marzal, P., Penya-Roja, J.-M., & Alvarez-Hornos, F. J. (2005). Removal of TEX vapours from air in a peat biofilter: Influence of inlet concentration and inlet load. Journal of Chemical Technology and Biotechnology, 81, 322–328.

    Article  Google Scholar 

  • Graham, J. R. (1996). GAC based gas phase biofiltration. In: Proceedings of the 1996 Conference on Biofiltration, The Reynolds Group, Tustin, CA, 85.

  • Jenkin, M. E., & Clemitshaw, K. C. (2000). Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment, 34, 2499–2527.

    Article  CAS  Google Scholar 

  • Jin, Y., Veiga, M. C., & Kennes, C. (2005). Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnology and Bioengineering, 92, 462–471.

    Article  CAS  Google Scholar 

  • Jorio, H., Kiared, K., Brzezinski, R., Leroux, A., Viel, R., & Heitz, M. (1998). Treatment of air polluted with high concentrations of toluene and xylene in a pilot scale biofilter. Journal of Chemical Technology and Biotechnology, 73, 183–196.

    Article  CAS  Google Scholar 

  • Jorio, H., Bibeau, L., Viel, G., & Heitz, M. (2000). Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance. Chemical Engineering Journal, 76, 209–221.

    Article  CAS  Google Scholar 

  • Kennes, C., & Veiga, M. C. (2001). Conventional biofilters. In C. Kennes & M. C. Veiga (Eds.), Bioreactors for waste gas treatment (pp. 47–98). Dordrecht: Kluwer.

    Google Scholar 

  • Kennes, C., Cox, H. H. J., Doddema, H. J., & Harder, W. (1996). Design and performance of biofilters for the removal of alkylbenzene vapours. Journal of Chemical Technology and Biotechnology, 66, 300–304.

    Article  CAS  Google Scholar 

  • Kennes, C., Rene, E. R., & Viega, M. C. (2009). Bioprocesses for air pollution control. Journal of Chemical Technology and Biotechnology, 84, 1419–1436.

    Article  CAS  Google Scholar 

  • Khan, F. I., & Ghoshal, A. K. (2000). Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13, 527–545.

    Article  Google Scholar 

  • Liu, Y., Quan, X., Sun, Y., Chen, J., Xue, D., & Chung, J. S. (2002). Simultaneous removal of ethylacetate and toluene in air streams using compost based biofilters. Journal of Hazardous Materials, B95, 199–213.

    Article  Google Scholar 

  • Marek, J., Paca, J., & Gerrard, A. M. (2000). Dynamic responses of biofilters to changes in the operating conditions in the process of removing toluene and xylene from air. Acta Biotechnologica, 20, 17–29.

    Article  CAS  Google Scholar 

  • Martin, F. J., & Loehr, R. C. (1996). Effect of periods of non – use on biofilter performance. Journal of the Air & Waste Management Association, 46, 539–546.

    CAS  Google Scholar 

  • McNevin, D., & Barford, J. (2000). Biofiltration as an odour abatement strategy. Biochemical Engineering Journal, 5, 231–242.

    Article  CAS  Google Scholar 

  • Miller, D. E., & Canter, L. W. (1991). Control of aromatic waste air streams by soil bioreactors. Environmental Progress, 10, 300–306.

    Article  CAS  Google Scholar 

  • Prevot, A. S. H., Dommen, J., Bäumle, M., & Furger, M. (2000). Diurnal variations of volatile organic compounds and local circulation systems in an Alpine valley. Atmospheric Environment, 34, 1413–1423.

    Article  CAS  Google Scholar 

  • Raghuvanshi, S., & Babu, B. V. (2009). Experimental studies and kinetic modeling for removal of methyl ethyl ketone using biofiltration. Bioresource Technology, 100, 3855–3861.

    Article  CAS  Google Scholar 

  • Rene, E. R., Arulneyam, D., & Swaminathan, T. (2004). Biofiltration. In A. Pandey (Ed.), Concise encyclopedia of bioresource technology (pp. 31–39). New York: Haworth.

    Google Scholar 

  • Rene, E. R., Murthy, D. V. S., & Swaminathan, T. (2005). Performance evaluation of a compost biofilter treating toluene vapours. Process Biochemistry, 40, 2771–2779.

    Article  CAS  Google Scholar 

  • Saravanan, V., & Rajamohan, N. (2009). Treatment of xylene polluted air using press mud – based biofilter. Journal of Hazardous Materials, 162, 981–988.

    Article  CAS  Google Scholar 

  • Strauss, J. M., Riedel, K. J., & du Plessis, C. A. (2004). Mesophilic and thermophilic BTEX substrate interactions for a toluene acclimatized biofilter. Applied Microbiology and Biotechnology, 64, 855–861.

    Article  CAS  Google Scholar 

  • Tang, H.-M., & Hwang, S.-J. (1997). Transient behaviour of the biofilters for toluene removal. Journal of the Air & Waste Management Association, 47, 1142–1151.

    CAS  Google Scholar 

  • Tautz, H., Bronnenmeier, R., Frank, P., & Zeller, B. (1992). Hochleistungsbiofilter Vortragsunterlagen zum Seminar Mikrobiologische Verfahrenstechniken zur Umweltsanierung. Wuppertal: Linde.

    Google Scholar 

  • Torronen, M. E., Lehtomaki, J. T., & Laukkarinen, A. H. (1992). A feasibility study of biological waste air purification in cold climate. In: Proceedings of the 9th World Clean Air Congress.

  • van Lith, C., & Standefer, S. (1993). Biofilters minimize VOC emissions. Environmental Protection, 48–51, March.

  • Wang, Z., Govind, R., & Bishop, D. F. (1996). Review of biofiltration – effect of support media on biofilter performance. In: Proceedings of the 89th Annual Meeting and Exhibition of the Air and Waste Manage. Assoc., Nashville, Tennessee.

  • Wani, A. H., Branion, A. M. R., & Lau, A. K. (1998). Effect of periods of starvation and fluctuating hydrogen sulphide concentration on biofilter dynamics and performance. Journal of Hazardous Materials, 60, 287–303.

    Article  CAS  Google Scholar 

  • Welcher, F. J. (1975). Standard methods of chemical analysis, vol. 2, part B (6th ed.). Malabar: Krieger.

    Google Scholar 

  • WHO (1981). Recommended health – based limits in occupational exposure to selected organic solvents, Geneva, World Health Organization. In: Technical Report Series 664.

  • Zilli, M., Converti, A., Lodi, A., Del Borgi, M., & Ferraiolo, G. (1993). Phenol removal from waste gases with a biological filter by Pseudomonas putida. Biotechnology and Bioengineering, 41, 693–699.

    Article  CAS  Google Scholar 

  • Zilli, M., Del Borgi, A., & Converti, A. (2000). Toluene vapour removal in a laboratory scale biofilter. Applied Microbiology and Biotechnology, 54, 248–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This biofiltration research was carried out using the partial research grants received from the Swedish International Development Agency (SIDA) under the project CHE/01-02/054/SIDA/DVSM and the Department of Chemical Engineering, IIT Madras. We are grateful to Mr. K. Narayana Rao and Mr. Z. Aslam Basha, Department of Chemical Engineering and Department of Biotechnology IIT Madras for their analytical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon R. Rene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rene, E.R., Murthy, D.V.S. & Swaminathan, T. Effect of Flow Rate, Concentration and Transient—State Operations on the Performance of a Biofilter Treating Xylene Vapors. Water Air Soil Pollut 211, 79–93 (2010). https://doi.org/10.1007/s11270-009-0282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0282-7

Keywords

Navigation