Skip to main content
Log in

How Much Does the Presence of a Competitor Modify the Within-Canopy Distribution of Ozone-Induced Senescence and Visible Injury?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Many natural vegetation species have been shown to be negatively affected by ozone. This study has investigated how the presence of competing species in a community affects two common responses to ozone: visible injury and senescence. Monocultures and mixtures of Trifolium repens and Lolium perenne were grown in large containers and were exposed in solardomes to either a rural episodic ozone profile (AOT40 of 12.86 ppm h) or control conditions (AOT40 of 0.02 ppm h) for 12 weeks. The proportion of ozone-injured or senesced leaves was different in the different regions of the canopy. The highest proportions of injured/senesced leaves were in the plant material growing at the edge of the canopy and the upper canopy, with a significantly lower proportion of injured leaves in the inner canopy. The presence of L. perenne increased the proportion of ozone-injured leaves in T. repens at the final harvest, whilst the presence of T. repens decreased the proportion of senesced leaves in L. perenne. In L. perenne, the proportion of injured leaves at the edge and inner canopy decreased significantly when grown in competition, whilst for T. repens the reverse effect occurred in the inner canopy only. Different mechanisms appeared to influence the interaction between response to ozone and competitors in these two species. In L. perenne the response to ozone may have been related to nitrogen supply, whereas in T. repens canopy structure was more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, C. P., Hogsett, W. E., Plocher, M., Rodecap, K. D., & Lee, E. H. (2001). Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings. Tree Physiology, 21, 319–327.

    Google Scholar 

  • Ashmore, M. R., Büker, P., Emberson, L. D., Terry, A. C., & Toet, S. (2007). Modelling stomatal ozone flux and deposition to grassland communities across Europe. Environmental Pollution, 146(3), 659–670.

    Article  CAS  Google Scholar 

  • Bassin, S., Kolliker, R., Cretton, C., Bertossa, M., Widmer, F., Bungener, P., et al. (2004). Intra-specific variability of ozone sensitivity in Centaurea jacea L., a potential bioindicator for elevated ozone concentrations. Environmental Pollution, 131(1), 1–12.

    Article  CAS  Google Scholar 

  • Bender, J., Muntifering, R. B., Lin, J. C., & Weigel, H. J. (2006). Growth and nutritive quality of Poa pratensis and influenced by ozone and competition. Environmental Pollution, 142(1), 109–115.

    Article  CAS  Google Scholar 

  • Bergmann, E., Bender, J., & Weigel, H. J. (1999). Ozone threshold doses and exposure–response relationships for the development of ozone injury symptoms in wild plant species. New Phytologist, 144(3), 423–435.

    Article  CAS  Google Scholar 

  • Chappelka, A. H., Neufeld, H. S., Davison, A. W., Somers, G. L., & Renfro, J. R. (2003). Ozone injury on cutleaf coneflower (Rudbeckia laciniata) and crown-beard (Verbesina occidentalis) in Great Smoky Mountains National Park. Environmental Pollution, 125(1), 53–59.

    Article  CAS  Google Scholar 

  • Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., & Tuovinen, J. P. (2000). Modelling stomatal ozone flux across Europe. Environmental Pollution, 109(3), 403–413.

    Article  CAS  Google Scholar 

  • Emberson, L. D., Ashmore, M. R., Murray, F., Kuylenstierna, J. C. I., Percy, K. E., Izuta, T., et al. (2001). Impacts of air pollutants on vegetation in developing countries. Water Air and Soil Pollution, 130(1-4), 107–118.

    Article  CAS  Google Scholar 

  • Finkelstein, P. L., Davison, A. W., Neufeld, H. S., Meyers, T. P., & Chappelka, A. H. (2004). Sub-canopy deposition of ozone in a stand of cutleaf coneflower. Environmental Pollution, 131(2), 295–303.

    Article  CAS  Google Scholar 

  • Fumagalli, I., Mignanego, L., & Mills, G. (2003). Ozone biomonitoring with clover clones: yield loss and carryover effect under high ambient ozone levels in northern Italy. Agriculture Ecosystems & Environment, 95(1), 119–128.

    Article  CAS  Google Scholar 

  • Goodman, P. J. (1988). Nitrogen fixation, transfer and turnover in upland and lowland grass-clover swards, using 15N isotope dilution. Plant and Soil, 112(2), 247–254.

    Article  Google Scholar 

  • Hayes, F., Mills, G., Harmens, H., & Norris, D. (2007). Evidence of widespread ozone damage to vegetation in Europe (1990–2006). Cambridgeshire, UK. ISBN: 978-0-9557672-1-0.

  • Hayes, F., Mills, G., & Ashmore, M. (2009). Effects of ozone on inter- and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens. Environmental Pollution, 157(1), 208–214.

    Article  CAS  Google Scholar 

  • Jäggi, M., Ammann, C., Neftel, A., & Fuhrer, J. (2006). Environmental control of profiles of ozone concentration in a grassland canopy. Atmospheric Environment, 40(28), 5496–5507.

    Article  CAS  Google Scholar 

  • Kersteins, G., & Lendzian, K. J. (1989). Interactions between ozone and plant cuticles, I. Ozone deposition and permeability. New Phytologist, 112, 13–19.

    Article  Google Scholar 

  • Lantinga, E. A., Nassiri, M., & Kropff, M. J. (1999). Modelling and measuring vertical light absorbtion within grass-clover mixtures. Agricultural and Forest Meteorology, 96, 71–83.

    Article  Google Scholar 

  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591–592.

    Google Scholar 

  • Mills, G., Hayes, F., Wilkinson, S., & Davies, W. (2009). Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Global Change Biology, 15(6), 1522–1533.

    Article  Google Scholar 

  • Novak, K., Skelly, J. M., Schaub, M., Krauchi, N., Hug, C., Landolt, W., et al. (2003). Ozone air pollution and foliar injury development on native plants of Switzerland. Environmental Pollution, 125(1), 41–52.

    Article  CAS  Google Scholar 

  • Nussbaum, S., Geissmann, M., & Fuhrer, J. (1995). Ozone exposure-response relationships for mixtures of perennial ryegrass and white clover depend on ozone exposure patterns. Atmospheric Environment, 29(9), 989–995.

    Article  CAS  Google Scholar 

  • Paoletti, E. (2005). Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo. Environmental Pollution, 134, 439–445.

    Article  CAS  Google Scholar 

  • Pell, E. J., Schlagnhaufer, C. D., & Arteca, R. N. (1997). Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum, 100(2), 264–273.

    Article  CAS  Google Scholar 

  • Sanz, J., Muntifering, R. B., Bermejo, V., Gimeno, B. S., & Elvira, S. (2005). Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum. Atmospheric Environment, 39(32), 5899–5907.

    Article  CAS  Google Scholar 

  • Shulski, M. D., Walter-Shea, E. A., Hubbard, K. G., Yuen, G. Y., & Horst, G. (2004). Penetration of photosynthetically active and ultraviolet radiation into alfalfa and tall fescue canopies. Agronomy Journal, 96(6), 1562–1571.

    Article  Google Scholar 

  • Simpson, D., Tuovinen, J. P., Emberson, L., & Ashmore, M. R. (2003). Characteristics of an ozone deposition module II: Sensitivity analysis. Water Air and Soil Pollution, 143(1–4), 123–137.

    Article  CAS  Google Scholar 

  • Sincik, M., & Acikgoz, E. (2007). Effects of white clover inclusion on turf characteristics, nitrogen fixation, and nitrogen transfer from white clover to grass species in turf mixtures. Communications in Soil Science and Plant Analysis, 38(13–14), 1861–1877.

    Article  CAS  Google Scholar 

  • Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448(7155), 791–U4.

    Article  CAS  Google Scholar 

  • Tonneijck, A. E. G., Franzaring, J., Brouwer, G., Metselaar, K., & Dueck, T. A. (2004). Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers. Environmental Pollution, 131(2), 205–213.

    Article  CAS  Google Scholar 

  • Utiyama, M., Fukuyama, T., Maruo, Y. Y., Ichino, T., Izumi, K., Hara, H., et al. (2004). Formation and deposition of ozone in a red pine forest. Water Air and Soil Pollution, 151(1–4), 53–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by the Centre for Ecology and Hydrology Integrating Fund Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicity Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, F., Mills, G. & Ashmore, M. How Much Does the Presence of a Competitor Modify the Within-Canopy Distribution of Ozone-Induced Senescence and Visible Injury?. Water Air Soil Pollut 210, 265–276 (2010). https://doi.org/10.1007/s11270-009-0248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0248-9

Keywords

Navigation