Skip to main content
Log in

Leaf diseases drive the Janzen–Connell mechanism regardless of light conditions: a 3-year field study

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In forests, negative density/distance-dependent seedling mortality (NDD) caused by natural enemies plays a key role in maintaining species diversity [Janzen–Connell (J–C) model]. However, the relative importance of natural enemies in mediating NDD under heterogeneous light conditions has remained unclear. We examined the relative importance of pathogens (i.e., soil pathogens, leaf diseases) on seedling performance in forest understories (FUs) and gaps (gaps) during a 3-year period (results of first year of our study have been previously reported). For the hardwood, Prunus grayana, we investigated seedling mortality, morbidity agents, growth, and root infection by arbuscular mycorrhizal fungi (AMF) beneath conspecific and heterospecific adults in FUs and gaps. Seedling mortality was higher beneath conspecific than heterospecific adults throughout 3 years at both sites, mainly due to continuous leaf disease (i.e., angular leaf spot), whereas damping-off diseases caused mortality only in the first year. Beneath each adult, seedling mortality was higher in FUs than in gaps until second year, but it did not differ between two habitat types in the third year, because leaf diseases caused severe damage even in gaps. Seedling mass was significantly lower beneath conspecific adults. AMF infection of seedlings was also lower beneath conspecific adults, while it was higher in gaps than in FUs beneath both adults. This study demonstrates that the J–C model in a hardwood tree, P. grayana is mainly driven by high NDD seedling mortality caused by airborne leaf diseases, which continuously attack seedlings in a NDD manner regardless of environmental light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvare-Loayza, Terborgh J (2011) Fates of seedling carpets in an Amazonian floodplain forest: intra-cohort competition or attack by enemies? J Ecol 99:1045–1054. doi:10.1111/j.1365-2745.2011.01835.x

    Article  Google Scholar 

  • Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY (2014) Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621. doi:10.1111/ele.12378

    Article  PubMed  Google Scholar 

  • Anderson D, Burnham K (2001) Commentary on models in ecology. Bull Ecol Soc Am 82:160–161

    Google Scholar 

  • Augspurger CK (1983) Seed dispersal by the tropical tree, Platypodium elegans, and the escape of its seedling from fungal pathogens. J Ecol 71:759–771. doi:10.2307/2259591

    Article  Google Scholar 

  • Augspurger CK (1984) Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65:1705–1712. doi:10.2307/1937766

    Article  Google Scholar 

  • Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88. doi:10.1038/nature12911

    Article  CAS  PubMed  Google Scholar 

  • Bayandala, Fukasawa Y, Seiwa K (2016) Roles of pathogens on replacement of tree seedlings in heterogeneous light environments in a temperate forest: a reciprocal seed sowing experiment. J Ecol 104:765–772. doi:10.1111/1365-2745.12552

    Article  Google Scholar 

  • Bell T, Freckleton RP, Lewis OT (2006) Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol Lett 9:569–574. doi:10.1111/j.1461-0248.2006.00905.x

    Article  PubMed  Google Scholar 

  • Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332. doi:10.1126/science.1190772

    Article  CAS  PubMed  Google Scholar 

  • Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance and density-dependent seed and seedling survival. J Ecol 102:845–856. doi:10.1111/1365-2745.12232

    Article  PubMed  PubMed Central  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen, pp 298–313

    Google Scholar 

  • Denslow JS (1987) Tropical rain forest gaps and tree species diversity. Ann Rev Ecol Syst 18:431–451

    Article  Google Scholar 

  • Dickie IA, Koide RT, Steiner KC (2002) Influence of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72:505–521. doi:10.1890/0012-9615(2002)072[0505:IOETOM]2.0.CO;2

  • Fukasawa Y (2012) Effects of wood decomposer fungi on tree seedling establishment on coarse woody debris. For Ecol Manag 266:232–238. doi:110.1016/j.foreco.2011.11.027

    Article  Google Scholar 

  • Gehring CA, Connell JH (2006) Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance. Mycorrhiza 16:89–98. doi:10.1007/s00572-005-0018-5

    Article  PubMed  Google Scholar 

  • Hara M, Takehara T, Hirabuki Y (1991) Structure of a Japanese beech forest at Mt. Kurikoma, north-eastern Japan. Saito Ho-on Kai Mus Res Bull 59:43–55

    Google Scholar 

  • Harms KE, Wright SJ, Calderon O, Hernandez A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495. doi:10.1038/35006630

    Article  CAS  PubMed  Google Scholar 

  • Hood LA, Swaine MD, Mason PA (2004) The influence of spatial patterns of damping-off disease and arbuscular mycorrhizal colonization on tree seedling establishment in Ghanaian tropical forest soil. J Ecol 92:816–823. doi:10.1111/j.0022-0477.2004.00917.x

    Article  Google Scholar 

  • Hyatt LA, Rosenberg MS, Howard TG, Bole G, Fang W, Anastasia J, Brown K, Grella R, Hinman K, Kurdziel JP, Gurevitch J (2003) The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis. Oikos 103:590–602. doi:10.1034/j.1600-0706.2003.12235.x

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Konno M, Iwamoto S, Seiwa K (2011) Specialization of a fungal pathogen on host tree species in a cross-inoculation experiment. J Ecol 99:1394–1401. doi:10.1111/j.1365-2745.2011.01869.x

    Article  Google Scholar 

  • Kotanen PM (2007) Effects of fungal seed pathogens under conspecific and heterospecific trees in a temperate forest. Can J Bot 85:918–925. doi:10.1139/B07-088

    Article  Google Scholar 

  • Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992. doi:10.1111/j.1461-0248.2008.01209.x

    Article  PubMed  Google Scholar 

  • Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, Bever JD (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755. doi:10.1038/nature09273

    Article  CAS  PubMed  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospect for biological control. Crit Rev Plant Sci 18:111–181

    Article  CAS  Google Scholar 

  • Masuya H, Kusunoki M, kosaka H, Aikawa T (2009) Haradamyces foliicola anam. Gen. et sp. Nov., a cause of zonate leaf blight disease in Cornus florida in Japan. Mycol Res 113:173–181. doi:10.1016/j.mycres.2008.10.004

    Article  PubMed  Google Scholar 

  • McCarthy-Neumann S, Ibanez I (2013) Plant–soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. Ecology 94:780–786. doi:10.1890/12-1338.1

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501. doi:10.1111/j.1469-8137.1990.tb00476.x

    Article  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707. doi:10.1890/03-0373

    Article  Google Scholar 

  • Nathan R, Casagrandi R (2004) A simple mechanic model of seed dispersal; predation and plant establishment: Janzen-Connell and beyond. J Ecol 92:733–746. doi:10.1111/j.0022-0477.2004.00914.x

    Article  Google Scholar 

  • O’Hanlon-Manners DL, Kotanen PM (2004) Evidence that fungal pathogens inhibit recruitment of a shade-intolerant tree, white birch (Betula papyrifera), in understory habitats. Oecologia 140:650–653. doi:10.1007/s00442-004-1625-0

    Article  PubMed  Google Scholar 

  • Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281. doi:10.1038/35005072

    Article  CAS  PubMed  Google Scholar 

  • Packer A, Clay K (2003) Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology 84:108–119. doi:10.1890/0012-9658(2003)084[0108:SPAPSS]2.0.CO;2

  • Peters HA (2003) Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol Lett 6:757–765. doi:10.1046/j.1461-0248.2003.00492.x

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Piao T, Comita LS, Jin G, Kim JH (2013) Density dependence across multiple life stages in a temperate old-growth forest of northeast China. Oecologia 172:207–217. doi:10.1007/s00442-012-2481-y

    Article  PubMed  Google Scholar 

  • Sahashi N, Kubono T, Shoji T (1995) Pathogenicity of Colletotrichum dematium isolated from current-year beech seedling exhibiting damping-off. Eur J For Pathol 25:145–151. doi:10.1111/j.1439-0329.1995.tb00329.x

    Article  Google Scholar 

  • Seiwa K (1998) Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad-leaved forests. J Ecol 86:219–228. doi:10.1046/j.1365-2745.1998.00245.x

    Article  Google Scholar 

  • Seiwa K, Miwa Y, Sahashi N, Kanno H, Tomita M, Ueno N, Yamazaki M (2008) Pathogen attack and spatial patterns of juvenile mortality and growth in a temperate tree, Prunus grayana. Can J For Res 38:2445–2454. doi:10.1139/X08-084

    Article  Google Scholar 

  • Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the dipterocarpaceae of a Bornean rain forest. Ecology 86:3048–3062. doi:10.1890/04-1540

    Article  Google Scholar 

  • Terabaru M, Yamazaki M, Kano K, Suyama Y, Seiwa K (2004) Influence of topographic positions on tree disribution patterns in a temperate broad-leaved deciduous forest. J Integr Field Sci 20:21–26

    Google Scholar 

  • Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314. doi:10.1086/664183

    Article  PubMed  Google Scholar 

  • Tomita M, Hirabuki Y, Seiwa K (2002) Post-dispersal changes in the spatial distribution of Fagus crenata seeds. Ecology 83:1560–1565. doi:10.1890/0012-9658(2002)083[1560:PDCITS]2.0.CO;2

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14. doi:10.1007/s004420100809

    Article  Google Scholar 

  • Yamazaki M, Iwamoto S, Seiwa K (2009) Distance- and density-dependent seedling mortality caused by several diseases in eight tree species co-occurring in a temperate forest. Plant Ecol 201:181–196. doi:10.1007/s11258-008-9531-x

    Article  Google Scholar 

  • Zhu Y, Comita LS, Hubbell SP, Ma K (2015) Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J Ecol 103:957–966. doi:10.1111/1365-2745.12414

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to two anonymous reviewers, who provided useful comments on the article. We thank Tomonori Sasaki, Yu Fukasawa, and members of the Laboratory of Forest Ecology, Tohoku University, for help with the experiments. This research was funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 23380079 to KS).

Author contribution statement

KS conceived and designed the experiments. B and KS performed the experiments. KM analyzed the data. KS and B wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Seiwa.

Additional information

Communicated by Katherine L. Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 202 kb)

Supplementary material 2 (DOCX 513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayandala, Masaka, K. & Seiwa, K. Leaf diseases drive the Janzen–Connell mechanism regardless of light conditions: a 3-year field study. Oecologia 183, 191–199 (2017). https://doi.org/10.1007/s00442-016-3757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3757-4

Keywords

Navigation