Skip to main content
Log in

Phytotoxic Effects of Heavy Metal Contaminated Soil Reveal Limitations of Extract-Based Ecotoxicological Tests

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Toxicity of contaminated soils cannot be assessed only by chemical analyses, therefore bioassays are increasingly used. Widely accepted ecotoxicological methods include organisms from all levels of the food-chain but plant-based ones are usually restricted to germination and growth tests. In our study the toxicity of heavy metal contaminated soil samples were examined not only by germination and bacterial tests of their extracts but also by the measurement of physiological parameters of two plant species (cucumber and wheat) that were grown directly on the contaminated substrate. Changes in chlorophyll concentration, stomatal conductance, fluorescence characteristics, and malondialdehyde (MDA) level (showing oxidative damage to lipids in leaves) undoubtedly indicated the mobilisation and toxic effect of contaminants. The results showed that the sensitivity of plant physiological parameters was higher than that of the extract-based ecotoxicological tests. Whereas these latter could not reveal the toxic effect of the highly contaminated soils the plants have reacted in a more complex way and their physiological parameters have changed significantly in all cases validating their use in such studies. The applied measurements also allow quicker and more reliable testing even under field conditions (stomatal conductance) or the detection of a more complex response if detailed analyses is needed (MDA, fluorescence imaging) thus underlining the importance of plant-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alef, K. (1995). Dehydrogenase activity. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 228–229). New York: Academic Press.

    Google Scholar 

  • Allen, G., & Burton, J. (1991). Assessing the toxicity of freshwater sediments. Annual Review of Environmental Toxicology and Chemistry, 10, 1585–1597.

    Article  Google Scholar 

  • An, Y. J. (2006). Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere, 62, 1359–1365.

    Article  CAS  Google Scholar 

  • An, Y. J., Kim, Y. M., Kwon, T. I., & Jeong, S. W. (2004). Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. The Science of the Total Environment, 326, 85–93.

    Article  CAS  Google Scholar 

  • Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13, 1–37.

    Article  CAS  Google Scholar 

  • Bell, P. F., Chaney, R. L., & Angle, J. S. (1991). Free metal activity and total metal concentrations as indeces of micronutrient availability to barley [Hordeum vulgare (L.) ‘Klages’]. Plant & Soil, 130, 51–62.

    Article  CAS  Google Scholar 

  • Boddi, B., Oravecz, A. R., & Lehoczki, E. (1995). Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica, 31, 411–420.

    CAS  Google Scholar 

  • Brohon, B., & Gourdon, R. (2000). Influence of soil microbial activity level on the determination of contaminated soil toxicity using Lumistox and MetPlate bioassays. Soil Biology and Biochemistry, 32, 853–857.

    Article  CAS  Google Scholar 

  • Buschmann, C., & Lichtenthaler, H. K. (1998). Principles and characteristics of multi-colour fluorescence imaging of plants. Journal of Plant Physiology, 152, 297–314.

    CAS  Google Scholar 

  • Colls, J. J., & Hall, D. P. (2004). Application of a chlorophyll fluorescence sensor to detect chelate-induced metal stress in Zea mays. Photosynthetica, 42, 139–145.

    Article  CAS  Google Scholar 

  • Fodor, F. (2002). Physiological responses of vascular plants to heavy metals. In M. N. V. Prasad & K. Strzalka (Eds.), Physiology and biochemistry of metal toxicity and tolerance in plants (pp. 149–177). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Fodor, F., Sárvári, É., Láng, F., Szigeti, Z., & Cseh, E. (1996). Effects of Pb and Cd on cucumber depending on the Fe-complex in the culture solution. Journal of Plant Physiology, 148, 434–439.

    CAS  Google Scholar 

  • Fuentes, A., Lloréns, M., Sáez, J., Aguilar, M. I., Pérez-Martin, A. B., Ortuño, J. F., et al. (2006). Ecotoxicity, phytotoxicity and extractability of heavy metals from different stabilised sewage sludges. Environmental Pollution, 143, 355–360.

    Article  CAS  Google Scholar 

  • Hernández, L. E., Gárate, A., & Carpena-Ruiz, R. (1997). Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant and Soil, 189, 97–106.

    Article  Google Scholar 

  • Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

    Article  CAS  Google Scholar 

  • Horváth, B., Gruiz, K., & Sára, B. (1997). Ecotoxicological testing of soil by four bacterial biotests. Toxicological & Environmental Chemistry, 58, 223–235.

    Article  Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2007). Does impact of point polluters affect growth and reproduction of herbaceous plants? Water, Air, and Soil Pollution, 186, 183–194.

    Article  CAS  Google Scholar 

  • Krupa, Z., & Baszynszki, T. (1995). Some aspects of heavy metal toxicity towards photosynthetic apparatus—direct and indirect effects on light and dark reactions. Acta Physiologiae Plantarum, 17, 177–190.

    CAS  Google Scholar 

  • Kuster, A., & Altenburger, R. (2007). Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere, 67, 194–201.

    Article  Google Scholar 

  • Kwan, K. K. (1993). Direct assessment of solid phase samples using Toxi-Chromotest kit. Environmental Toxicology and Water Quality, 8, 223–230.

    Article  CAS  Google Scholar 

  • Larsson, E. H., Bornman, J. F., & Asp, H. (1998). Influence of UV-B radiation and Cd on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany, 49, 1031–1039.

    Article  CAS  Google Scholar 

  • Lei, Y., Korpelainen, H., & Li, C. (2007). Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere, 68, 686–694.

    Article  CAS  Google Scholar 

  • Leitgib, L., Kálmán, J., & Gruiz, K. (2007). Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere, 66, 428–434.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1997). Fluorescence imaging as a diagnostic tool for plant stress. Trends in Plant Science, 2, 316–320.

    Article  Google Scholar 

  • Lichtenthaler, H. K., & Babani, F. (2000). Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiology and Biochemistry, 38, 889–895.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Schweiger, J. (1998). Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. Journal of Plant Physiology, 152, 272–282.

    CAS  Google Scholar 

  • Mallakin, A., Babu, T. S., Dixon, D. G., & Greenberg, B. M. (2002). Sites of toxicity of specific photooxidation products of anthracene to higher plants: Inhibition of photosynthetic activity and electron transport in Lemna gibba L. G-3 (duckweed). Environmental Toxicology, 17, 462–471.

    Article  CAS  Google Scholar 

  • McGrath, R., & Singleton, I. (2000). Pentachlorophenol transformation in soil: A toxicological assessment. Soil Biology and Biochemistry, 32, 1311–1314.

    Article  CAS  Google Scholar 

  • MSZ (Hungarian Standard) (1988). 21978-30, Investigation of hazardous waste. Azotobacter agile test.

  • MSZ (Hungarian Standard) (1991). 22902-4, Water toxicological tests. Growth inhibition tests on Sinapis alba seedlings.

  • MSZ (Hungarian Standard) (1993). 21470-88, Environmental protection: soil testing. Pseudomonas fluorescens soil toxicity test.

  • MSZ (Hungarian Standard) (1998). 21978-9, Soil extracts for ecotoxicity testing.

  • Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—Verification of chlorophyll standards by atomic-absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384–394.

    Article  CAS  Google Scholar 

  • Power, M., van der Meer, J. R., Tchelet, R., Egli, T., & Eggen, R. (1998). Molecular-based method can contribute to assessments of toxicological risks and bioremediation strategies. Journal of Microbiological Methods, 32, 107–119.

    Article  CAS  Google Scholar 

  • Preston, S., Coad, N., Townend, J., Killham, K., & Paton, G. I. (2000). Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic. Environmental Toxicology and Chemistry, 19, 775–780.

    Article  CAS  Google Scholar 

  • Sayed, O. H. (2003). Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321–330.

    Article  CAS  Google Scholar 

  • Schmidt, W. (2003). Iron solutions: Acquisition strategies and signalling pathways in plants. Trends in Plant Science, 8, 188–193.

    Article  CAS  Google Scholar 

  • Schmitt-Jansen, M., & Altenburger, R. (2008). Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Aquatic Toxicology, 86, 49–58.

    Article  CAS  Google Scholar 

  • Seiler, T. B., Schulze, T., & Hollert, H. (2008). The risk of altering soil and sediment samples upon extract preparation for analytical and bio-analytical investigations—A review. Analytical Bioanalytical Chemistry, 390, 1975–1985.

    Article  CAS  Google Scholar 

  • Sengar, R. S., & Pandey, M. (1996). Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segments. Biologia Plantarum, 38, 459–462.

    Article  CAS  Google Scholar 

  • Snel, J. F. H., & van Kooten, O. (1990). The use of chlorophyll fluorescence and other non-invasive spectroscopic techniques in plant stress physiology. Photosynthesis Research, 25, 146–332.

    Article  Google Scholar 

  • Steinberg, S. M., Pozomiek, E. J., Engelmann, W. H., & Rogers, K. R. (1995). A review of environmental applications of bioluminescence measurements. Chemosphere, 30, 2155–2197.

    Article  CAS  Google Scholar 

  • Szigeti, Z. (2008). Physiological status of cultivated plants characterised by multi-wavelength fluorescence imaging. Acta Agronomica Hungarica, 56, 223–234.

    Article  CAS  Google Scholar 

  • Titov, A. F., Talanova, V. V., & Boeva, N. P. (1995). Growth responses of barley and wheat seedlings to lead and cadmium. Biologia Plantarum, 38, 431–436.

    Article  Google Scholar 

  • Torslov, J. (1993). Comparison of bacterial toxicity tests based on growth, dehydrogenase activity and esterase activity of Pseudomonas fluorescens. Ecotoxicology and Environmental Safety, 25, 33–40.

    Article  CAS  Google Scholar 

  • Vassil, A. D., Kapulnik, Y., Raskin, I., & Salt, D. E. (1998). The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology, 117, 447–453.

    Article  CAS  Google Scholar 

  • Viswanathan, R. (1994). Earthworms and assessment of ecological impact of soil xenobiotics. Chemosphere, 28, 413–420.

    Article  CAS  Google Scholar 

  • Wallace, A., Wallace, G. A., & Cha, J. W. (1992). Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents—The special case of iron. Journal of Plant Nutrition, 15, 1589–1598.

    Article  CAS  Google Scholar 

  • Warne, M. S. J., Heemsbergen, D., Stevens, D., McLaughlin, M., Cozens, G., Whatmuff, et al. (2008). Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environmental Toxicology and Chemistry, 27, 786–792.

    Article  Google Scholar 

  • Weckx, J. E. J., & Clijsters, H. M. M. (1996). Oxidative damage and defence mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amount of copper. Physiologia Plantarum, 96, 506–512.

    Article  CAS  Google Scholar 

  • Weckx, J. E. J., & Clijsters, H. M. M. (1997). Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Phyiology and Biochemistry, 35, 405–410.

    CAS  Google Scholar 

  • Wong, J. W. C., Li, K., Fang, M., & Su, D. C. (2001). Toxicity evaluation of sewage sludges in Hong Kong. Environment International, 27, 373–380.

    Article  CAS  Google Scholar 

  • Yoon, J. M., Oliver, D. J., & Shanks, J. V. (2007). Phytotoxicity and phytoremediation of 2, 6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere, 68, 1050–1057.

    Article  CAS  Google Scholar 

  • Zhang, S. Z., & Shan, X. Q. (1997). The determination of rare earth elements in soil by inductively coupled plasma mass spectrometry. Atomic Spectroscopy, 18, 140–144.

    CAS  Google Scholar 

Download references

Acknowledgements

This work supported by the grant ETT 093/2006 of the Hungarian Ministry of Health. The authors would also like to thank the valuable contribution of Dr. Zoltán Szabó and his co-workers at the National Environmental Health Institute (József Fodor National Health Centre-OKK-OKI) for the ecotoxicological tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Fodor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyuricza, V., Fodor, F. & Szigeti, Z. Phytotoxic Effects of Heavy Metal Contaminated Soil Reveal Limitations of Extract-Based Ecotoxicological Tests. Water Air Soil Pollut 210, 113–122 (2010). https://doi.org/10.1007/s11270-009-0228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0228-0

Keywords

Navigation