Skip to main content
Log in

The Use of Goosegrass (Eleusine indica) to Remediate Soil Contaminated with Petroleum

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A greenhouse experiment was performed to evaluate effectiveness of goosegrass (Eleusine indica) in phytoremediation of soil contaminated with 8,247 mg kg−1 of total petroleum hydrocarbons (TPH). We determined seed germination toxicity, soil microbial viable counts, catalase activity, dehydrogenase activity (DHA), and the concentrations of TPH and 14 polycyclic aromatic hydrocarbons (PAHs) in soil and plant tissue. After 5 months, the initial level of contamination was reduced by 47% in planted soil, whereas it was only reduced by 11% in nonplanted soil. Bacterial numbers were 72 times greater in the rhizosphere treated soil than in the unvegetated treatment at the end of the study. There was no correlation between microbial counts or DHA and catalase activity, and the correlation between microbial counts and DHA was weak. Significant chemical reduction of H2O2, caused by the soil fabric, was observed in the determination of catalase activity. In case of vegetated treatment, 32% of PAHs was removed, but only 5% of PAHs was dissipated in the unvegetated pots. Gas chromatography/mass spectrometry analysis of plant tissue indicated that a low amount of PAHs (25.50 mg kg−1 dry biomass) was detected in goosegrass roots growing in the contaminated soil, and no uptake into the shoots was occurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, T. A., Guthrie, E. A., & Walton, B. T. (1993). Bioremediation in the rhizosphere. Environmental Science and Technology, 27, 2630–2636.

    Article  CAS  Google Scholar 

  • Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., & Dill, G. M. (2002). Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiology, 129, 1265–1275.

    Article  CAS  Google Scholar 

  • Balba, M. T., Al-Awadhi, N., & Al-Daher, R. (1998). Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 32, 155–164.

    Article  CAS  Google Scholar 

  • Bastow, T. P., van Aarssen, B. G. K., & Lang, D. (2007). Rapid small-scale separation of saturate, aromatic and polar components in petroleum. Organic Geochemistry, 38, 1235–1250.

    Article  CAS  Google Scholar 

  • Beyer, L., Wachendorf, C., Elsner, D. C., & Knabe, R. (1993). Suitability of dehydrogenase activity assay as an index of soil biological activity. Biology and Fertility of Soils, 16, 52–56.

    Article  CAS  Google Scholar 

  • Brzezińska, M., Włodarczyk, T., Stępniewski, W., & Przywara, G. (2005). Soil aeration status and catalase activity. Acta Agrophysica, 5, 555–565.

    Google Scholar 

  • Casida, L. E. (1977). Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology, 34, 630–636.

    CAS  Google Scholar 

  • Cassidy, M. B., Leung, K. T., Lee, H., & Trevors, J. T. (2000). A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. Journal of Microbiological Methods, 40, 135–145.

    Article  CAS  Google Scholar 

  • Claassens, S., Van Rensburg, L., Riedel, K. J., Bezuiddenhout, J. J., & Van Jansen, P. J. (2006). Evaluation of the efficiency of various commercial products for the bioremediation of hydrocarbon contaminated soil. Environmentalist, 26, 51–62.

    Article  Google Scholar 

  • García-Gil, J. C., Plaza, C., Soler-Rovira, P., & Polo, A. (2000). Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry, 32, 1907–1913.

    Article  Google Scholar 

  • Harvey, P. J., Campanella, B. F., Castro, P. M. L., Harms, H., Lichtfouse, E., Schäffner, A. R., et al. (2002). Phytoremediation of polyaromatic hydrocarbons, anilines, phenols. Environmental Science and Pollution Research, 9, 29–47.

    Article  CAS  Google Scholar 

  • Hutchinson, S. L., Banks, M. K., & Schawb, A. P. (2001). Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. Journal of Environmental Quality, 30, 395–403.

    Article  CAS  Google Scholar 

  • Jodahl, J. L., Foster, L., Schnoor, J. L., & Alvarez, P. J. J. (1997). Effect of hybrid trees on microbial populations important to hazardous waste bioremediation. Environmental Toxicology and Chemistry, 16, 1318–1321.

    Article  Google Scholar 

  • Joner, E. J., Hirmann, D., Szolar, O. H. J., Todorovic, D., Leyval, C., & Loibner, A. P. (2004). Priming effects of PAH degradation and ecotoxicity during a phytoremediation experiment. Environmental Pollution, 128, 429–435.

    Article  CAS  Google Scholar 

  • Kirk, J. L., Klirnomos, J. N., Lee, H., & Trevors, J. T. (2002). Phytotoxicity assay to assess plant species for phytoremediation of petroleum-contaminated soil. Bioremediation Journal, 6, 57–63.

    Article  CAS  Google Scholar 

  • Lima, J. A., Nahas, E., & Gomes, A. C. (1996). Microbial populations and activities in sewage sludge and phosphate fertilizer-amended soil. Applied Soil Ecology, 4, 75–82.

    Article  Google Scholar 

  • Maila, M. P., & Cloete, T. E. (2005). The use of biological activities to monitor the removal of fuel contaminants-perspective for monitoring hydrocarbon contamination: a review. International Biodeterioration and Biodegradation, 55, 1–8.

    Article  CAS  Google Scholar 

  • Merkl, N., Schultze-Kraft, R., & Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water, Air, and Soil Pollution, 165, 195–209.

    Article  CAS  Google Scholar 

  • Nedunuri, K. V., Govindaraju, R. S., Banks, M. K., Schwab, A. P., & Chen, Z. (2000). Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. Journal of Environmental Engineering, 126, 483–490.

    Article  CAS  Google Scholar 

  • Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis, part II (2nd ed., pp. 937–970). Wisconsin: ASA-SSSA.

    Google Scholar 

  • Palmroth, M. R. T., Pichtel, J., & Puhakka, J. A. (2002). Phytoremediation of subartic soil contaminated with diesel fuel. Bioresource Technology, 84, 221–228.

    Article  CAS  Google Scholar 

  • Palmroth, M. R. T., Koskinen, P. E. P., Pichtel, J., Vaajasaari, K., Joutti, A., Tuhkanen, T. A., et al. (2006). Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. Journal of Soils and Sediments, 6, 128–136.

    Article  CAS  Google Scholar 

  • Parrish, Z. D., Banks, M. K., & Schwab, A. P. (2004). Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soils. International Journal of Phytoremediation, 6, 119–137.

    Article  CAS  Google Scholar 

  • Petrisor, G. P., Dobrota, S., Komnitsas, K., Lazar, I., Kuperberg, J. M., & Serban, M. (2004). Artificial inoculation-perspectives in tailings phytostabilization. International Journal of Phytoremediation, 6, 1–16.

    Article  CAS  Google Scholar 

  • Siciliano, S. D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., et al. (2001). Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Applied and Environmental Microbiology, 67, 2469–2475.

    Article  CAS  Google Scholar 

  • US EPA. (2000). Introduction to phytoremediation. EPA/600/R-99/107, Office of Research and Development, Washington

  • Wang, J., Zhang, Z., Su, Y., He, W., He, F., & Song, H. (2008). Phytoremediation of petroleum polluted soil. Petroleum Science, 5, 167–171.

    Article  CAS  Google Scholar 

  • White, P. M., Wolf, D. C., Thoma, G. J., & Reynolds, C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, Air, and Soil Pollution, 169, 207–220.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the National Natural Science Foundation of China (40672211). The authors are grateful to State Key Laboratory of Heavy Oil Processing of China for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Zhang, Z., Sun, S. et al. The Use of Goosegrass (Eleusine indica) to Remediate Soil Contaminated with Petroleum. Water Air Soil Pollut 209, 181–189 (2010). https://doi.org/10.1007/s11270-009-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0190-x

Keywords

Navigation