Skip to main content
Log in

Successive Ferric and Sulphate Reduction using Dissimilatory Bacterial Cultures

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In the present work the kinetics of ferric reduction was investigated using dissimilatory ferric- and sulphate-reducing bacterial cultures. The effect of sulphate reduction on Fe(III) reduction was also studied. The study is an attempt to improve the biological reduction rate of Fe(III) as an alternative biotechnological way to the reduction step in steelmaking processing operations. The results obtained show that the reduction of ferric iron and sulphate took place in a successive way and none synergetic effect was detected. The simultaneous action of both metabolic activities did not enhance the process but slowed down the kinetics of ferric reduction. The reduction process of 3 g/L of soluble ferric and 3 g/L of sulphate lasted 25 days. Ferric iron was the first electron acceptor to be reduced in the first 15 days followed by the sulphate reduction in the following 10 days. That result suggests that ferric reduction is a preferential metabolic process over sulphate reduction when both electron acceptors coexist. None improvement in the kinetics was observed using an electron donor concentration in excess. In contrast, the total reduction of ferric ion (3 g/L) with adapted bacterial cultures was achieved in only 36 h. The presence of sulphate had no effect on the ferric reduction. Finally, an improved culture medium for ferric-reducing bacteria is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Balch, W. E., & Wolfe, R. S. (1976). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent grown of Methanobacterium ruminatium in a pressurized atmosphere. Applied and Environmental Microbiology, 32, 781–789.

    CAS  Google Scholar 

  • Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., & Wolfe, R. S. (1979). Methanogens: reevaluation of a unique biological group. Microbiological Reviews, 43, 260–296.

    CAS  Google Scholar 

  • Coates, J. D., Lonergan, D. J., Phillips, E. J. P., Jenter, H., & Lovley, D. R. (1995). Desulfomonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Archives of Microbiology, 164, 406–413.

    Article  CAS  Google Scholar 

  • Coates, J. D., Phillips, E. J. P., Lonergan, D. J., Jenter, H., & Lovley, D. R. (1996). Isolation of Geobacter species from diverse sedimentary environments. Applied and Environmental Microbiology, 62(5), 1531–1536.

    CAS  Google Scholar 

  • Cummings, D. E., March, A. W., Bostick, B., Spring, S., Caccavo, F., Jr., Fendorf, S., et al. (2000). Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho). Applied and Environmental Microbiology, 66(1), 154–162.

    Article  CAS  Google Scholar 

  • Kolmert, A., Wikström, P., & Hallberg, K. B. (2000). A fast and simple turbidimetric method for the determination of sulphate in sulphate-reducing bacterial cultures. Journal of Microbiological Methods, 41, 179–184.

    Article  CAS  Google Scholar 

  • Li, Y., Vali, H., Yang, J., Phelps, T. J., & Zhang, C. (2006). Reduction of iron oxides enhanced by sulphate-reducing bacterium and biogenic H2S. Geomicrobiology Journal, 23, 103–117.

    Article  Google Scholar 

  • Lovley, D. R. (2003). Cleanning up with genomics: applying molecular biology to bioremediation. Nature Reviews/Microbiology, 1, 36–44.

    Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1986a). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51(4), 683–689.

    CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1986b). Availability of ferric iron reduction for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Applied and Environmental Microbiology, 52(4), 751–757.

    CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1987a). Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53, 1536–1540.

    CAS  Google Scholar 

  • Lovley, D. R., & Phillips, A. J. P. (1987b). Competitive mechanisms for inhibition of sulphate reduction and methane production in the zone of ferric iron reduction in sediments. Applied and Environmental Microbiology, 53(11), 2636–2641.

    CAS  Google Scholar 

  • Lovley, D. R., & Phillips, A. J. P. (1992). Reduction of uranium by Desulfovibrio desulfuricans. Applied & Environmental Microbiology, 58(3), 850–856.

    CAS  Google Scholar 

  • Lovley, D. R., Roden, E. E., Phillips, E. J. P., & Woodward, J. C. (1993). Enzymatic iron and uranium reduction by sulphate-reducing bacteria. Marine Geology, 113, 41–53.

    Article  CAS  Google Scholar 

  • Madigan, T. M., Martinko, J. M., & Parker, J. (2003). Brock. Biology of microorganisms. Upper Saddle River: Pearson Education. ISBN: 0-13-066271-2.

    Google Scholar 

  • Nevin, K. P., & Lovley, D. R. (2002). Mechanisms for accesing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geotrix fermetans. Applied & Environmental Microbiology, 68(5), 2294–2299.

    Article  CAS  Google Scholar 

  • Orth, A., Anastasijevic, N., & Eichberger, H. (2007). Low CO2 emission technologies for iron and steelmaking as well as titania slag production. Minerals Engineering, 20, 854–861.

    Article  CAS  Google Scholar 

  • Postgate, J. R. (1984). The Sulphate-reducing Bacteria. London: Cambridge University Press.

    Google Scholar 

  • Poulton, S. W., Krom, M. D., & Raiswell, R. (2004). A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulphide. Geochemica et Cosmochimica Acta, 68(18), 3703–3715.

    Article  CAS  Google Scholar 

  • Robles-Arenas, V.M. (2007) Caracterización hidrogeológica de la Sierra de Cartagena-La Unión (SE de la Península Ibérica). Impacto de la minería abandonada sobre el medio hídrico. Tesis Doctoral. Universidad Politécnica de Cataluña.

  • Schroeder, P., & Ladd, L. (1991). Slowing the increase of atmospheric carbon dioxide: a biological approach. Climatic Change, 19, 283–290.

    Article  Google Scholar 

  • Stookey, L. L. (1970). Ferrozine—a new spectrophotometric reagent for iron. Anal Chemistry, 42, 779–781.

    Article  CAS  Google Scholar 

  • Teir, S., Eloneva, S., & Zevenhoven, R. (2005). Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Conversion & Management, 46, 2954–2979.

    Article  CAS  Google Scholar 

  • Teir, S., Kuusik, R., Fogelholm, C. J., & Zevenhoven, R. (2007). Production of magnesium carbonates from serpentinite for long-term storage of CO2. International Journal of Mineral Processing, 85(1–3), 1–15.

    CAS  Google Scholar 

  • Vanbroekhoven, K., Van Roy, S., Ryngaert, A., Diles, L., & Dejonghe, W. (2006). Competitive dissimilatory iron reduction during in situ bioprecipitation of metals. Geophysical Research Abstracts, 8, 08498.

    Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of two Spain institutions: Ministerio de Educación y Ciencia, through the “Plan Nacional de Educación y Ciencia” (project reference, CTM 2005-02450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camino García-Balboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Balboa, C., Cautivo, D., Blázquez, M.L. et al. Successive Ferric and Sulphate Reduction using Dissimilatory Bacterial Cultures. Water Air Soil Pollut 207, 213–226 (2010). https://doi.org/10.1007/s11270-009-0130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0130-9

Keywords

Navigation