Skip to main content
Log in

Nitric Oxide-Triggered Bis-Trimethylenediaminecobalt(III)-Mediated Hydrolysis of Nitrophenylphosphate/Sodium Pyrophosphate

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The synergistic effects of cobalt trimethylenediamine and nitric oxide toward the hydrolysis of nitrophenylphosphate/sodium pyrophosphate for different reactant ratio were investigated. Sodium nitroprusside under irradiation by UV light at 254 nm was utilized as nitric oxide donor in solutions. An increased hydrolysis was observed for activated phosphate moieties (nitrophenylphosphate/cobalt pyrophosphate) compared to that of pyrophosphate. The direct interaction of nitric oxide with the phosphorous center is presumed to be the reason for enhanced hydrolysis in those reaction solutions. This study demonstrates the possible role of nitric oxide in decontamination reactions of poorly biodegradable phosphate esters in natural waters due to phototransformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

NP:

Nitrophenolate ion

NPP:

Nitrophenylphosphate

SNP:

Sodium nitroprusside

tn:

Trimethylenediamine

[Cotn2(aq)]3+ :

Diaqua bis-trimethylenediaminecobalt(III)

Pi:

Inorganic phosphate

PPi:

Inorganic pyrophosphate

References

  • Baldwin, D. S., Beattie, J. K., Coleman, L. M., & Jones, D. R. (1995). Phosphate ester hydrolysis mediated by mineral phases. Environmental Science and Technology, 29(6), 1706–1709.

    Article  CAS  Google Scholar 

  • Bauer, H. F., & Drinkard, W. C. (1960). A general synthesis of cobalt (III) complexes: a new intermediate, Na3[Co(CO3)3].3H2O. Journal of the American Chemical Society, 82, 5031–5032.

    Article  CAS  Google Scholar 

  • Challis, B. C., & Kyrtopoulos, S. A. (1977). Rapid formation of carcinogenic N-nitrosamines in aqueous alkaline solutions. British Journal of Cancer, 35(5), 693–696.

    CAS  Google Scholar 

  • Chin, J., Banaszczyk, M., Jubian, V., & Zou, X. (1989). Cobalt(III) complex promoted hydrolysis of phosphate diesters: comparison in reactivity of rigid cis diaquo(tetraaza)cobalt(III) complexes. Journal of the American Chemical Society, 111, 186–190.

    Article  CAS  Google Scholar 

  • Demaster, E. G., Quast, B. J., & Mitchell, R. A. (1997). Inhibition of S-nitrosation of reduced glutathione in aerobic solutions of nitric oxide by phosphate and other inorganic anions. Biochemical Pharmacology, 53, 581–585.

    Article  CAS  Google Scholar 

  • Espenson, J. H., & Wolenuk, G. S., Jr. (1972). Kinetics and mechanisms of some substitution reactions of pentacyanoferrate (III) complexes. Inorganic Chemicals, 11(9), 2034–2041.

    Article  CAS  Google Scholar 

  • Hubner, P. W. A., & Milburn, R. M. (1980). Hydrolysis of pyrophosphate to orthophosphate promoted by cobalt (III). Evidence for the role of polynuclear species. Inorganic Chemicals, 19, 1267–1272.

    Article  Google Scholar 

  • Jonasson, I. R., Lincoln, S. F., & Stranks, D. R. (1970). A proton magnetic resonance and preparative study of trimethylenediamine complexes of cobalt (III). Aust J Chem, 23, 2267–2278.

    CAS  Google Scholar 

  • Khun, L. P., Doali, J. O., & Wellman, C. (1960). The reaction of nitric oxide with triethyl phosphate. Journal of the American Chemical Society, 82, 4792–4794.

    Article  Google Scholar 

  • Kotzias, D., Parlar, H., & Korte, F. (1982). Photoreactivity of organic chemicals in water in the presence of nitrate and nitrite. Naturwissenschaften, 69, 444–445.

    Article  CAS  Google Scholar 

  • Oliviera, M. G., Langley, G. J., & Rest, A. J. (1995). Photolysis of the [Fe(CN)5(NO)]2- ion in water and poly(vinyl alcohol) films: Evidence for cyano radical, cyanide ion and nitric oxide loss and redox pathways. Journal of the Chemical Society Dalton Trans, 2013–2019.

  • Ramirez-Munoz, J. (1975). The colorimetric determination of phosphates in water at low ppm levels by automatic discrete sample analysis. Analytica Chimica Acta, 78, 431–438.

    Article  CAS  Google Scholar 

  • Rawji, G. H., Yamada, M., Sadler, N. P., & Milburn, R. M. (2000). Cobalt(III)-promoted hydrolysis of 4-nitrophenyl phosphate: The role of dinuclear species. Inorganica Chimica Acta, 303(2), 168–174.

    Article  CAS  Google Scholar 

  • Smith, R. M., & Hansen, D. E. (1998). The pH rate profile for the hydrolysis of a peptide bond. Journal of the American Chemical Society, 120, 8910–8913.

    Article  CAS  Google Scholar 

  • Springborg, J., & Schaffer, C. E. (1973). A new method for the preparation of dianionobis(diamine)cobalt(III) complexes. Acta Chemica Scandinavica, 27, 2223–2225.

    Article  CAS  Google Scholar 

  • Tafesse, F. (1998). Hydrolysis of nerve agent simulants by synergistic effects of tetraaminecobalt(III) and microemulsions. Inorganica Chimica Acta, 269(2), 287–291.

    Article  CAS  Google Scholar 

  • Tafesse, F., & Eguzozie, K. (2009). Efficient hydrolysis of 4-nitrophenylphosphate catalyzed by copper bipyridyl in microemulsions. Ecotoxicology and Environmental Safety, 72, 954–959.

    Article  CAS  Google Scholar 

  • Tafesse, F., & Enemchukwu, M. (2008). Nitric oxide assisted hydrolysis of nitrophenylphosphate. Nitric Oxide, 18, 274–278.

    Article  CAS  Google Scholar 

  • Tafesse, F., & Mndubu, Y. (2007). Iron promoted decontamination studies of nitrophenylphosphate in aqueous and microemulsion media: A model for phosphate ester decontamination in the environment. Water, Air, and Soil Pollution, 183, 107–113.

    Article  CAS  Google Scholar 

  • Williams, N. H., Takasaki, B., Wall, M., & Chin, J. (1999). Structure and nuclease activity of simple dinuclear metal complexes: Quantitative dissection of the role of metal ions. Accounts of Chemical Research, 32, 485–493.

    Article  CAS  Google Scholar 

  • Wolfe, S. K., & Swinehart, J. H. (1975). Photochemistry of pentacyanonitrosylferrate (2-) nitroprusside. Inorganic Chemicals, 14, 1049–1053.

    Article  CAS  Google Scholar 

  • Yang, Y. C. (1999). Chemical detoxification of nerve agent VX. Accounts of Chemical Research, 32, 109–115.

    Article  CAS  Google Scholar 

  • Yang, Y. C., Baker, J. A., & Ward, J. R. (1992). Decontamination of chemical warfare agents. Chemical Reviews, 92, 1729–1743.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from NRF-IRDP and graduate research and fellowship funds from the Chemistry Department, University of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikru Tafesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tafesse, F., Enemchukwu, M. Nitric Oxide-Triggered Bis-Trimethylenediaminecobalt(III)-Mediated Hydrolysis of Nitrophenylphosphate/Sodium Pyrophosphate. Water Air Soil Pollut 207, 203–212 (2010). https://doi.org/10.1007/s11270-009-0129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0129-2

Keywords

Navigation