Skip to main content

Advertisement

Log in

Matrix-Based Fertilizers Reduce Nutrient Leaching While Maintaining Kentucky Bluegrass Growth

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We tested the efficacy of matrix-based fertilizers (MBFs) to improve Kentucky bluegrass (Poa pratensis L.) growth while reducing NH, NO3, dissolved reactive phosphorus (DRP), and total phosphorus (TP) compared to commercial slow-release fertilizer (SRF) Polyon®, ESN®, and Avail® in greenhouse column studies. The MBFs covered a range of inorganic N and P in compounds that are relatively loosely bound (MBF6) and more tightly bound compounds (MBF7) with Al(SO4)318H2O and/or Fe2(SO4)33H2O and with high ionic exchange compounds starch, cellulose, and lignin. The total amount of NO3 and NH4 leached was greater from columns receiving Polyon® and ESN® fertilizers than all other treatments. The MBF6+Avail® or MBF7+Avail® fertilizers leached 64–68% less NO3 than Polyon® (43-0-0) and ESN® (46-0-0), and 73–76% less TDP and TP than Avail® (10-34-0). A greater amount of NO3 was leached from the MBF6+Avail® and the MBF7+Avail® treatments than the other MBF fertilizer treatments. Shoot and root biomass were greater when plants received the Avail®, MBF6+Avail®, and MBF7+Avail® fertilizer treatments than the other fertilizer treatments. When combined with small quantities of commercial SRFs, these new MBFs were able to maintain plant growth while reducing N and P leaching. These new MBF formulations do not depend on organic or inorganic coatings to reduce N and P leaching and with further testing and development could be effective commercial fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA. (1998). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C.

  • Ayers, R. (1997). The life-cycle of chlorine, Part I: chlorine production and the chlorine-mercury connection. Journal of Industrial Ecology, 1, 81–94.

    Article  Google Scholar 

  • Basfar, A., Idriss, A., Ali, K. M., & Mofti, S. M. (2003). UV stability and radiation-crosslinking on linear low density polyethylene and low density polyethylene for greenhouse applications. Polymer Degradation & Stability, 82, 229–234.

    Article  CAS  Google Scholar 

  • Blaylock, A. D., Kaufmann, J., & Dowbenko, R. D. (2005). Nitrogen fertilizers technologies. Western Nutrient Management, 6, 8–13.

    Google Scholar 

  • Bird, J. A., van Kessel, C., & Horwath, W. R. (2002). Nitrogen dynamics in humic fractions under alternative straw management in temperate rice. Soil Science Society of America Journal, 66, 478–488.

    CAS  Google Scholar 

  • Bird, J. A., van Kessel, C., & Horwath, W. R. (2003). Stabilization of 13C-carbon and immobilization of 15 N-nitrogen from rice straw in humic fractions. Soil Science Society of America Journal, 67, 806–816.

    Article  CAS  Google Scholar 

  • Bonhomme, S., Cuer, A., Delort, A. M., Lemaire, J., Sancelme, M., & Scott, G. (2003). Environmental degradation of polyethylene. Polymer Degradation and Stability, 81, 441–452.

    Article  CAS  Google Scholar 

  • Bove, G. E., Jr., Rogerson, P. A., & Vena, J. E. (2007). Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer. International Journal of Health Geographics, 6, 1–18.

    Article  Google Scholar 

  • Bremmner, H. M. (1996). Nitrogen-total. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. chemical methods (pp. 1085–1122). Madison: American Society of Agronomy.

    Google Scholar 

  • Bricker, S.B., Clement, C., Pirhalla, D.E., Orlando, S.P., and Farrow, D.R.G. (1999). National estuarine eutrophication assessment, effects of nutrient enrichment in the nations estuaries, NOAA, National Ocean Service, Special Projects Office and the Centers for Coastal Ocean Science. Silver Spring, MD. 71pp.

  • Broesch, D. F., Brinsfield, R. B., & Magnien, R. E. (2001). Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration and challenges for agriculture. Journal of Environmental Quality, 30, 303–320.

    Article  Google Scholar 

  • Bush, B. J., & Austin, N. R. (2001). Timing of phosphorus fertilizer application within an irrigation cycle of perennial pasture. Journal of Environmental Quality, 30, 939–946.

    CAS  Google Scholar 

  • Cox, F. R., & Hendricks, S. E. (2000). Soil test phosphorus and clay content effects on runoff water quality. Journal of Environmental Quality, 29, 1582–1586.

    Article  CAS  Google Scholar 

  • Daniel, T. C., Sharpley, A. N., & Lemunyon, J. L. (1998). Agricultural phosphorus and eutrophication: a symposium overview. Journal of Environmental Quality, 27, 271–257.

    Article  Google Scholar 

  • D’Angelo, E. M. (2005). Phosphorus sorption capacity and exchange by soils from mitigated and late successional bottomland forest wetlands. Wetlands, 25, 297–305.

    Article  Google Scholar 

  • de Jonge, L. W., Moldrup, P., Rubaek, G. H., Schelde, K., & Djurhuus, J. (2004). Particle leaching and particle-facilitated transport of phosphorus at the field scale. Vadose Zone Journal, 3, 462–470.

    Article  Google Scholar 

  • Devevre, O. C., & Horwath, W. R. (2001). Stabilization of fertilizer nitrogen-15 into humic substances in aerobic vs. waterlogged soil following straw incorporation. Soil Science Society of America Journal, 65, 499–510.

    Article  CAS  Google Scholar 

  • Donnelly, P. K., Entry, J. A., Crawford, D. L., & Cromack, K., Jr. (1990). The effect of soil temperature, moisture and acidity on lignin and cellulose decomposition. Microbial Ecology, 20, 289–295.

    Article  CAS  Google Scholar 

  • Easton, Z. M., & Petrovic, A. M. (2004). Fertilizer source effect on ground and surface water quality in drainage from turfgrass. Journal of Environmental Quality, 33, 645–655.

    Article  CAS  Google Scholar 

  • Elliott, H. A., Brandt, R. C., Kleinmann, P. J., Sharpley, A. N., & Beegle, D. B. (2006). Estimating source coefficients for phosphorus site indices. Journal of Environmental Quality, 35, 2195–2210.

    Article  CAS  Google Scholar 

  • Entry, J. A., & Emmingham, W. H. (1995). Influence of forest age on nutrient availability and storage in coniferous soils of the Oregon Coast Range. Canadian Journal of Forest Research, 25, 114–120.

    Article  CAS  Google Scholar 

  • Entry, J. A., & Sojka, R. E. (2007). Matrix based fertilizes with arbuscular mycorrhizae reduce nitrogen and phosphorus leaching in greenhouse column studies. Water, Air & Soil Pollution, 180, 283–292.

    Article  CAS  Google Scholar 

  • Entry, J. A., & Sojka, R. E. (2008). Matrix based fertilizes reduce nitrogen and phosphorus leaching in three soils. Journal of Environmental Management, 87, 364–372.

    Article  CAS  Google Scholar 

  • Entry, J. A., Donnelly, P. K., & Cromack, K., Jr. (1991). Influence of ectomycorrhizal mat soils on lignin and cellulose degradation rates. Biology & Fertility of Soils, 11, 75–78.

    Article  CAS  Google Scholar 

  • Entry, J. A., Fuhrmann, J. J., Sojka, R. E., & Shewmaker, G. (2004). Irrigated agriculture impacts soil microbial diversity. Environmental Management, 33, S363–S373.

    Google Scholar 

  • Frossard, E., Condron, L. M., Oberson, A., Sinaj, S., & Fardeau, J. C. (2000). Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29, 15–23.

    CAS  Google Scholar 

  • Geter, D. R., Chang, L. W., Hanley, N. M., Ross, M. K., Pegram, R. A., & DeAngelo, A. B. (2004). Analysis of in vivo and in vitro DNA strand breaks from trihalomethane exposure. Journal of Carcinogenesis, 3, 2.

    Article  Google Scholar 

  • Hart, M. R., Quin, B. F., & Nguyen, M. L. (2003). Phosphorus runoff from agricultural land and direct fertilizer effects. Journal of Environmental Quality, 33, 1954–1972.

    Google Scholar 

  • Haygarth, P. M., & Jarvis, S. C. (1999). Transfer of phosphorus from agricultural soils. Advances in Agronomy, 66, 19–249.

    Article  Google Scholar 

  • He, Z. L., Zhang, M. K., Stoffella, P. J., Yang, X. E., & Banks, D. J. (2006). Phosphorus concentrations and loads in runoff water under crop production. Soil Science Society of America Journal, 70, 1807–1816.

    Article  CAS  Google Scholar 

  • Ivahnenko, T. & Barbash, J.E. (2004). Chloroform in the hydologic system-sources, transport, fate, occurrence, and effects of human health and aquatic organisms, U.S. Department of the Interior. U.S. Geological Survey Scientific Investigations Report 2004-5137. Reston, VA 34pp.

  • Kirk, R. E. (1995). Experimental design: procedures for the behavioral sciences (2nd ed.). Belmont: Brooks Cole Publishing Co.

    Google Scholar 

  • Kleinman, P. J. A., Sharpley, A. N., Wolf, A. M., Beegle, D. B., & Moore, P. A. (2002). Measuring water extractable phosphorus in manure as an indicator phosphorus in runoff. Soil Science Society of America Journal, 66, 2009–2015.

    Article  CAS  Google Scholar 

  • Lehmann, R. G., Miller, J. R., Xu, S., Singh, U. B., & Reece, C. F. (1998). Degradation of silicone polymer at different soil moistures. Environmental Science & Technology, 32, 1260–1264.

    Article  CAS  Google Scholar 

  • Lehmann, R. G., Miller, J. R., & Kozerski, G. E. (2000). Degradation of silicon polymer in field soil under natural conditions. Chemosphere, 41, 743–749.

    Article  CAS  Google Scholar 

  • McDowell, R. W., Condron, L. M., Stewart, I., & Cave, V. (2005). Chemical nature and diversity of phosphorus in New Zealand pasture soils using 31P nuclear magnetic resonance spectroscopy and sequential fractionation. Nutrient Cycling in Agroecosystems, 72, 241–254.

    Article  CAS  Google Scholar 

  • Nash, D., Hannah, M., Clemow, L., Halliwell, D., Webb, B., & Chapman, D. (2003). A laboratory study of phosphorus mobilization from commercial fertilizers. Australian Journal of Soil Research, 41, 1201–1212.

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen, M. J., Toledano, M. B., & Elliott, P. (2000). Uptake of chlorination disinfection by-products; a review and a discussion of its implications for exposure assessment in epidemiological studies. Journal of Exposure & Analytical Environmental Epidemiology, 10, 586–599.

    Article  CAS  Google Scholar 

  • Öberg, G. (2002). The natural chlorine cycle- fitting the scattered pieces. Applied Microbiology & Biotechnology, 58, 565–581.

    Article  CAS  Google Scholar 

  • Owens, L. B., & Shipitalo, M. J. (2006). Surface and subsurface phosphorus losses from fertilized pasture systems in Ohio. Journal of Environmental Quality, 35, 1101–1109.

    Article  CAS  Google Scholar 

  • Penn, C. J., & Sims, J. T. (2002). Phosphorus forms in biosolids-amended soils and phosphorus losses in runoff: effects of wastewater treatment process. Journal of Environmental Quality, 31, 1349–1361.

    Article  CAS  Google Scholar 

  • Porter, C. K., Putnam, S. D., Hunting, K. L., & Riddle, M. R. (2005). The effect of trihalomethane and haloacetic acid exposure on fetal growth in a Maryland County, American. Journal of Epidemiology, 162, 334–344.

    Article  Google Scholar 

  • Pote, D. H., Daniel, T. C., Nichols, D. J., Sharpley, A. N., Moore, P. A., Jr., Miller, D. M., et al. (1999). Relationship between phosphorus levels in three Ultisols and phosphorus concentrations in runoff. Journal of Environmental Quality, 28, 170–175.

    CAS  Google Scholar 

  • Quin, B. F., Braithwaite, A., Nguyen, L., Blennerhassett, J., & Watson, C. J. (2003). The modification of commodity P and N fertilizers to reduce nutrient loss to the environment, In L.D Currie and J.A Hanly. (Eds.) Tools for nutrient and pollutant management: applications to agriculture and environmental quality (pp. 115–121). Occasional Rep. 17. Fertilizer and Lime Research Centre, Massey Univ., Palmerston North, New Zealand.

  • SAS Institute Inc. 2001. The SAS System for Microsoft Window release 8.2., Statistical Analysis System (SAS) Institute Inc., Cary, NC.

  • Sharpley, A. N., Daniel, T. C., & Edwards, D. R. (1993). Phosphorus movement in the landscape. Journal of Production Agriculture, 6, 492–500.

    Google Scholar 

  • Sharpley, A. N., Foy, B., & Withers, P. (2000). Practical and innovative measures for the control of agricultural phosphorus losses to water: an overview. Journal of Environmental Quality, 29, 1–9.

    Article  CAS  Google Scholar 

  • Shober, A. L., & Sims, J. T. (2007). Integrating phosphorus source and soil properties into risk assessments for phosphorus loss. Soil Science Society of America Journal, 71, 551–560.

    Article  CAS  Google Scholar 

  • Sims, J. T. (1993). Environmental soil testing for phosphorus. Journal of Production Agriculture, 6, 501–507.

    Google Scholar 

  • Snedecor, W. G., & Cochran, W. G. (1994). Statistical methods (9th ed.). Ames: Iowa State University Press.

    Google Scholar 

  • Sojka, R. E., Entry, J. A., & Furhmann, J. J. (2005). The influence of high application rates of polyacrylamide on microbial metabolic potential in an agricultural soil. Applied Soil Ecology, 108, 405–412.

    Google Scholar 

  • Sojka, R. E., & Entry, J. A. (2007). Matrix-based fertilizers: a new fertilizer formulation concept to reduce nutrient leaching, In Currie, L.D., Yates, L.J., (Eds.) Proceedings of the Fertilizer and Lime Research Centre Workshop. (pp 67-85). Designing Sustainable Farms: Critical Aspects of Soil and Water Management, Palmerston North, New Zealand.

  • Whitaker, N., Best, M. J., Nieuwenhuijsen, J., Wakefield, J., Fawell, J., & Elliott, P. (2005). Modeling exposure to disinfection by-products in drinking water for an epidemiological study of adverse birth outcomes. Journal of Exposure & Analytical Environmental Epidemiology, 15, 138–146.

    Article  CAS  Google Scholar 

  • Xue, S., Zhao, Q., Wei, L., & Jia, T. (2008). Trihalomethane formation potential of organic fractions in secondary effluent. Journal of Environmental Science, 20, 520–525.

    Article  CAS  Google Scholar 

  • Zeighami, E. A., Watson, A. P., & Craun, G. F. (1990). Serum lipid levels in neighboring communities with chlorinated and nonchlorinated drinking water. Fundamental Applied Toxicology, 6, 421–432.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Sheryl Verwey for assistance with nutrient analysis and James Forester for assistance with graphic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Entry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entry, J.A., Sojka, R.E. Matrix-Based Fertilizers Reduce Nutrient Leaching While Maintaining Kentucky Bluegrass Growth. Water Air Soil Pollut 207, 181–193 (2010). https://doi.org/10.1007/s11270-009-0127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0127-4

Keywords

Navigation