Skip to main content

Advertisement

Log in

Nutritional Status of Mediterranean Trees Growing in a Contaminated and Remediated Area

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Soil contamination may contribute to forest decline, by altering nutrient cycling and acquisition by plants. This may hamper the establishment of a woody plant cover in contaminated areas, thus limiting the success of a restoration program. We studied the nutritional status of planted saplings of Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.), white poplar (Populus alba L.), and wild olive tree (Olea europaea var. sylvestris Brot.) in the Guadiamar Green Corridor (SW Spain) and compared it with established adult trees. Soils in this area were affected by a mine-spill in 1998 and a subsequent restoration program. The spill resulted in soil acidification, due to pyrite oxidation, and deposited high concentrations of some trace elements. In some sites, we detected a phosphorus deficiency in the leaves of Q. ilex and O. europaea saplings, as indicated by a high N:P ratio (>16). For O. europaea, soil contamination explained 40% of the variability in leaf P and was negatively related to chlorophyll content. Soil pH was a significant factor predicting the variability of several nutrients, including Mg, P, and S. The uptake of Mg and S by P. alba was greater in acidic soils. The monitoring of soil pH is recommended since long-term effects of soil acidification may negatively affect the nutritional status of the trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biochemistry, bioavailability and risks of metals. New York: Springer.

    Google Scholar 

  • Arduini, I., Godbold, D. L., & Onnis, A. (1994). Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiologia Plantarum, 92, 675–680. doi:10.1111/j.1399-3054.1994.tb03039.x.

    Article  CAS  Google Scholar 

  • Arduini, I., Godbold, D. L., & Onnis, A. (1996). Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiologia Plantarum, 97, 111–117. doi:10.1111/j.1399-3054.1996.tb00486.x.

    Article  CAS  Google Scholar 

  • Arenas, J. M., Carrascal, F., & Montes, C. (2008). Breve historia de la construcción del Corredor Verde del Guadiamar. In C. Montes & F. Carrascal (Eds.), La restauración ecológica del río Guadiamar y el proyecto del Corredor Verde. La historia de un paisaje emergente, pp. 29–64. Sevilla: Consejería de Medio Ambiente, Junta de Andalucía.

    Google Scholar 

  • Bosso, S. T., Enzweiler, J., & Angélica, R. S. (2008). Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water, Air, and Soil Pollution, 195, 257–273.

    CAS  Google Scholar 

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic Press.

    Google Scholar 

  • Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 3, 251–261. doi:10.1111/j.1365-2389.1952.tb00646.x.

    Article  Google Scholar 

  • Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality, 33, 522–531.

    CAS  Google Scholar 

  • Cabrera, F., Ariza, J., Madejón, P., Madejón, E., & Murillo, J. M. (2008). Mercury and other trace elements in soils affected by the mine tailing spill in Aznalcollar (SW Spain). Science of the Total Environment, 390, 311–322. doi:10.1016/j.scitotenv.2007.10.002.

    Article  CAS  Google Scholar 

  • CAC. (1992). Análisis de suelo, foliar y de aguas de riego. Consejería de Agricultura y Comercio, Junta de Extremadura. Madrid: Mundi Prensa.

  • Carreira, J. A., Harrison, A. F., Sheppard, L. J., & Woods, C. (1997). Reduced soil P availability in a Sitka spruce (Picea sitchensis (Bong.) Carr) plantation induced by applied acid-mist: significance in forest decline. Forest Ecology and Management, 92, 153–166. doi:10.1016/S0378-1127(96)03914-X.

    Article  Google Scholar 

  • Cornelissen, J. H. C., Werger, M. J. A., Castro-Díez, P., van Rheenen, J. W. A., & Rowland, A. P. (1997). Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia, 111, 460–469. doi:10.1007/s004420050259.

    Article  Google Scholar 

  • Domínguez, M. T., Marañón, T., Murillo, J. M., Schulin, R., & Robinson, B. H. (2008). Trace element accumulation in woody plants of the Guadiamar valley, SW Spain: a large scale phytomanagement case study. Environmental Pollution, 152, 50–59. doi:10.1016/j.envpol.2007.05.021.

    Article  CAS  Google Scholar 

  • Domínguez, M. T., Madrid, F., Marañón, T., & Murillo, J. M. (2009). Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere, doi:10.1016/j.chemosphere.2009.03.026.

  • Fernández-Escobar, R. (1997). Fertilización. In D. Barranco, R. Fernández-Escobar & L. Rallo (Eds.), El cultivo del olivo, pp. 229–249. Madrid: Mundi-Prensa.

    Google Scholar 

  • Foster, N. W., Hazlett, P. W., Nicolson, J. A., & Morrison, I. K. (1989). Ion leaching from a sugar maple forest in response to acidic deposition and nitrification. Water, Air, and Soil Pollution, 48, 251–261.

    CAS  Google Scholar 

  • Fuentes, D., Disante, K. B., Valdecantos, A., Cortina, J., & Vallejo, V. R. (2007a). Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environmental Pollution, 145, 316–323. doi:10.1016/j.envpol.2006.03.005.

    Article  CAS  Google Scholar 

  • Fuentes, D., Disante, K., Valdecantos, A., Cortina, J., & Vallejo, V. R. (2007b). Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc. Chemosphere, 66, 412–420. doi:10.1016/j.chemosphere.2006.06.027.

    Article  CAS  Google Scholar 

  • García, L. V. (2004). Escaping the Bonferroni iron claw in ecological studies. Oikos, 105, 657–663. doi:10.1111/j.0030-1299.2004.13046.x.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1979). Particle-size analysis hydrometer: a simplified method for routine textural analysis and a sensitive test of measurement parameters. Soil Science Society of America Journal, 43, 1004–1007.

    Google Scholar 

  • Greger, M. (1999). Metal availability and bioconcentration in plants. In M. N. V. Prasad & J. Hagemeyer (Eds.), Heavy metals stress in plants—from molecules to ecosystems, pp. 1–27. Berlin: Springer.

    Google Scholar 

  • Hartley-Whitaker, J., Cairney, J. W., & Mehar, A. A. (2000). Sensivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (scots pine) seedlings. Plant and Soil, 218, 31–42. doi:10.1023/A:1014989422241.

    Article  CAS  Google Scholar 

  • Henkin, Z., Seligman, N. G., Kafkafi, U., & Noy-Meir, I. (1998). Effective growing days: a simple predictive model of response of herbaceous plant growth in a Mediterranean ecosystem to variation in rainfall and phosphorus availability. Journal of Ecology, 86, 137–148. doi:10.1046/j.1365-2745.1998.00243.x.

    Article  Google Scholar 

  • Hochberg, Y., & Benjamini, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics, 25, 60–83.

    Google Scholar 

  • Illera, V., Walter, I., Souza, P., & Cala, V. (2000). Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soil under a semi-arid environment. Science of the Total Environment, 255, 29–44. doi:10.1016/S0048-9697(00)00444-7.

    Article  CAS  Google Scholar 

  • ITGE. (1999). Contribución del ITGE a la valoración de los efectos del accidente de Aznalcóllar y la recuperación del río Guadiamar. Madrid: Instituto Tecnológico Geominero de España, Ministerio de Medio Ambiente.

    Google Scholar 

  • Kammerer, P. A., Rodel, M. G., Hughes, R. A., & Lee, G. F. (1967). Low level Kjeldahl Nitrogen determination on the Technicon autoanalyzer. Environmental Science & Technology, 1, 340–342. doi:10.1021/es60004a003.

    Article  CAS  Google Scholar 

  • Kieliszewska-Rokicka, B., Rudawska, M., & Leski, T. (1997). Ectomycorrhizae of young and mature scots pine trees in industrial regions in Poland. Environmental Pollution, 98, 315–324. doi:10.1016/S0269-7491(97)00150-4.

    Article  CAS  Google Scholar 

  • Koerselman, W., & Meuleman, A. F. M. (1996). The Vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441–1450. doi:10.2307/2404783.

    Article  Google Scholar 

  • Kopinga, J., & van den Burg, J. (1995). Using soil and foliar analysis to diagnose the nutritional status of urban trees. Journal of Arboriculture, 21, 17–24.

    Google Scholar 

  • Kraus, U., & Wiegand, J. (2006). Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley. Science of the Total Environment, 367, 855–871. doi:10.1016/j.scitotenv.2005.12.027.

    Article  CAS  Google Scholar 

  • Kwan, K. H. M., & Smith, S. (1991). Some aspects of the kinetics of cadmium and thallium uptake by fronds of Lemna minor L. New Phytologist, 117, 91–102. doi:10.1111/j.1469-8137.1991.tb00948.x.

    Article  CAS  Google Scholar 

  • Lambkin, D. C., & Alloway, B. J. (2003). Arsenate-induced phosphate release from soils and its effect on plant phosphorus. Water, Air, and Soil Pollution, 144, 41–56. doi:10.1023/A:1022949015848.

    Article  CAS  Google Scholar 

  • Likens, G. E., Driscoll, C. T., & Buso, D. C. (1996). Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272, 244–246. doi:10.1126/science.272.5259.244.

    Article  CAS  Google Scholar 

  • Madejón, E., Pérez de Mora, A., Felipe, E., Burgos, P., & Cabrera, F. (2006). Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environmental Pollution, 139, 40–52. doi:10.1016/j.envpol.2005.04.034.

    Article  CAS  Google Scholar 

  • Madejón, P. (2004). Elementos traza y nutrientes en plantas y suelos afectados por el vertido minero de Aznalcóllar. PhD dissertation, University of Seville, Seville.

  • Madejón, P., Marañón, T., Murillo, J. M., & Robinson, B. (2004). White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forest. Environmental Pollution, 132, 145–155. doi:10.1016/j.envpol.2004.03.015.

    Article  CAS  Google Scholar 

  • Mallow, C. L. (1973). Some comments on Cp. Technometrics, 15, 661–675. doi:10.2307/1267380.

    Article  Google Scholar 

  • Meharg, A. A., & Hartley-Whitaker, J. (2002). Tansley Review No. 133. Arsenic Uptake and Metabolism in Arsenic Resistant and Nonresistant Plant Species. The New Phytologist, 154, 29–43. doi:10.1046/j.1469-8137.2002.00363.x.

    Article  CAS  Google Scholar 

  • Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiology, 69, 1376–1381. doi:10.1104/pp.69.6.1376.

    Article  CAS  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In USDA (Ed.), USDA Circular No.939. Oce, Washington DC: US Gov. Print.

    Google Scholar 

  • Oudeh, M., Khan, M., & Scullion, J. (2002). Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environmental Pollution, 116, 293–300. doi:10.1016/S0269-7491(01)00128-2.

    Article  CAS  Google Scholar 

  • Paré, D., & Bernier, B. (1989). Origin of the phosphorus deficiency observed in declining sugar maple stands in the Quebec Appalachians. Canadian Journal of Forest Research, 19, 24–34. doi:10.1139/x89-004.

    Article  Google Scholar 

  • Pennanen, T., Perkioëmaëki, J., Kiikkilaë, O., Vanhala, P., Neuvonen, S., & Fritze, H. (1998). Prolonged, simulated acid rain and heavy metal deposition: separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology, 53, 291–300. doi:10.1111/j.1574-6941.1998.tb00545.x.

    Article  Google Scholar 

  • Pérez-de-Mora, A., Madrid, F., Cabrera, F., & Madejón, E. (2007). Amendments and plant cover influence on trace element pools in a contaminated soil. Geoderma, 139, 1–10. doi:10.1016/j.geoderma.2006.12.001.

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates trough calcium channels and disturbs the plant water status. Plant Journal, 32, 539–548. doi:10.1046/j.1365-313X.2002.01442.x.

    Article  CAS  Google Scholar 

  • Querejeta, J. I., Roldán, A., Albaladejo, J., & Castillo, V. (1998). The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid Mediterranean site with Pinus halepensis. Forest Science, 43, 203–211.

    Google Scholar 

  • Rehfuess, K. E. (1989). Acidic deposition-Extent and impact on forest soils, nutrition, growth and disease phenomena in Central Europe: a review. Water, Air, and Soil Pollution, 48, 1–20. doi:10.1007/BF00282367.

    Article  CAS  Google Scholar 

  • Reichman, S. M., Asher, C. J., Mulligan, D. R., & Menzies, N. W. (2001). Seedling responses to three Australian tree species to toxic concentration of zinc solution culture. Plant and Soil, 235, 151–158. doi:10.1023/A:1011903430385.

    Article  CAS  Google Scholar 

  • Rodà, F., Mayor, X., Sabaté, S., & Diego, V. (1999). Water and nutrient limitations to primary production. In F. Rodà, J. Retana, C. Gracia & J. Bellot (Eds.), Ecology of Mediterranean evergreen oak forests, pp. 183–194. Berlin: Springer.

    Google Scholar 

  • Rolfe, G. L. (1973). Lead uptake by selected tree seedlings. Journal of Environmental Quality, 2, 153–157.

    Article  CAS  Google Scholar 

  • Romanyà, J., & Vallejo, V. R. (2004). Productivity of Pinus radiata plantations in Spain in response to climate and soil. Forest Ecology and Management, 195, 177–189. doi:10.1016/j.foreco.2004.02.045.

    Article  Google Scholar 

  • Ruby, M. V., Davis, A., & Nicholson, A. (1994). In situ formation of lead phosphates in soils as a method to immobilize lead. Environmental Science & Technology, 28, 646–654. doi:10.1021/es00053a018.

    Article  CAS  Google Scholar 

  • Sardans, J., Roda, F., & Peñuelas, J. (2004). Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp rotundifolia on different soils. Plant Ecology, 174, 305–317. doi:10.1023/B:VEGE.0000049110.88127.a0.

    Article  Google Scholar 

  • Tomlinson, G. H. (2003). Acidic deposition, nutrient leaching and forest growth. Biogeochemistry, 65, 51–81. doi:10.1023/A:1026069927380.

    Article  CAS  Google Scholar 

  • Toribio, M., & Romanyà, J. (2006). Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils. Science of the Total Environment, 363, 11–21. doi:10.1016/j.scitotenv.2005.10.004.

    Article  CAS  Google Scholar 

  • Tuomela, M., Steffen, K. T., Kerko, E., Hartikainen, H., Hofrichter, M., & Hatakka, A. (2005). Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiology Ecology, 53, 79–186. doi:10.1016/j.femsec.2004.11.008.

    Article  CAS  Google Scholar 

  • Vallejo, V. R., Bautista, S., & Cortina, J. (2000). Restoration for soil protection after disturbance. In L. Trabaud (Ed.), Life and Environment in the Mediterranean, pp. 301–343. Southampton: WIT Press.

    Google Scholar 

  • Villar-Salvador, P., Planelles, R., Enriquez, E., & Peñuelas Rubira, J. (2004). Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. Forest Ecology and Management, 196, 257–266. doi:10.1016/j.foreco.2004.02.061.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed determination of the chromic acid tritation method. Soil Science, 37, 29–38. doi:10.1097/00010694-193401000-00003.

    Article  CAS  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    CAS  Google Scholar 

  • Wisniewski, L., & Dickinson, N. M. (2003). Toxicity of copper to Quercus robur (English Oak) seedlings from a copper-rich soil. Environmental and Experimental Botany, 50, 99–107.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Regional Ministry of Environment (Junta de Andalucía) for supporting this study within the SECOVER research program and the Spanish Ministry of Education for a PFU grant awarded to M.T. Domínguez. We thank Dr. Luis V. García for his statistical advice and Olga Cazalla (Centre for Scientific Instrumentation, University of Granada) for the ICP-MS measurements. We are grateful to José María Alegre and Isabel Ibáñez for their help in different stages of the study and to an anonymous reviewer for the comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María T. Domínguez.

Appendix

Appendix

Concentration of trace elements in soil and leaves (adapted from Domínguez et al. 2008).

Table 6 Mean and range (minimum–maximum) of total concentrations (mg kg−1) of trace elements in soils in the Guadiamar Green Corridor, from spill-affected and unaffected sites
Table 7 Trace element concentrations (mean ± standard error) in leaves of adult trees and afforested saplings from affected sites in the study area

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, M.T., Marañón, T., Murillo, J.M. et al. Nutritional Status of Mediterranean Trees Growing in a Contaminated and Remediated Area. Water Air Soil Pollut 205, 305–321 (2010). https://doi.org/10.1007/s11270-009-0075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0075-z

Keywords

Navigation