Skip to main content
Log in

Microbial Metabolic Potential Affected by Surplus Wastewater Irrigation in Tropical Soil Cultivated with Tifton 85 Bermuda Grass (Cynodon dactylon Pers. X C. niemfuensis Vanderyst)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TSE:

treated sewage effluent

CLPP:

community level physiological profile

STP:

sewage treatment plant

AWCD:

average well color development

NMDS:

non-metric multidimensional scaling

ANOSIM:

analysis of similarity

AWC:

available water capacity

References

  • Ayers, R. S., & Westcot, D. S. (1985). Water quality for agriculture. Irrigation and Drainage Paper, #29. Rome: FAO.

    Google Scholar 

  • Bending, G. D., Turner, M. K., Rayns, F., Marx, M. C., & Wood, M. (2004). Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology & Biochemistry, 36, 1785–1792. doi:10.1016/j.soilbio.2004.04.035.

    Article  CAS  Google Scholar 

  • Bouwer, H., & Chaney, R. L. (1974). Land treatment of wastewater. Advances in Agronomy, 26, 133–176. doi:10.1016/S0065-2113(08) 60870-6.

    Article  CAS  Google Scholar 

  • Calbrix, R., Laval, K., & Barray, S. (2005). Analysis of the potential functional diversity of the bacterial community in soil: a reproducible procedure using sole-carbon-source utilization profiles. European Journal of Soil Biology, 41, 11–20. doi:10.1016/j.ejsobi.2005.02.004.

    Article  CAS  Google Scholar 

  • Candela, L., Fabregat, S., Josa, A., Suriol, J., Vigués, N., & Mas, J. (2007). Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: application on a golf course (Girona, Spain). The Science of the Total Environment, 374, 26–35. doi:10.1016/j.scitotenv.2006.12.028.

    Article  CAS  Google Scholar 

  • Ciiagro (2008). Instituto agronômico. http://www.ciiagro.sp.gov.br/ciiagroonline/-html. june 10, 2008.

  • Classen, A. T., Boyle, S. I., Haskins, K. E., Overby, S. T., & Hart, S. C. (2003). Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiology Ecology, 44, 319–328. doi:10.1016/S0168-6496(03) 00068-0.

    Article  CAS  Google Scholar 

  • da Fonseca, A. F., Herpin, U., Dias, C. T. S., & Melfi, A. J. (2007a). Nitrogen forms, pH and total carbon in a soil incubated with treated sewage effluent. Brazilian Archives of Biology and Technology, 50, 743–752.

    Article  Google Scholar 

  • da Fonseca, A. F., Herpin, U., Paula, A. M., Victoria, R. L., & Melfi, A. J. (2007b). Agricultural use of treated sewage effluents: agronomic and environmental implications and perspectives for Brazil. Science in Agriculture, 64, 194–209.

    Google Scholar 

  • da Fonseca, A. F., Melfi, A. J., Monteiro, F. A., Montes, C. R., Almeida, V. V., & Herpin, U. (2007c). Treated sewage effluent as a source of water and nitrogen for Tifton 85 Bermuda grass. Agricultural Water Management, 87, 328–336. doi:10.1016/j.agwat.2006.08.004.

    Article  Google Scholar 

  • Garland, J. L., & Mills, A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization. Applied and Environmental Microbiology, 57, 2351–2359.

    Google Scholar 

  • Gelsomino, A., Badalucco, L., Ambrosoli, R., Crecchio, C., Puglisi, E., & Meli, S. M. (2006). Changes in chemical and biological soil properties as induced by anthropogenic disturbance: A case study of an agricultural soil under recurrent flooding by wastewaters. Soil Biology & Biochemistry, 38, 2069–2080. doi:10.1016/j.soilbio.2005.12.025.

    Article  CAS  Google Scholar 

  • Gloaguen, T. V., Forti, M. C., Lucas, Y., Montes, C. R., Gonc¸alves, R. A. B., Herpin, U., et al. (2007). Soil solution of a Brazilian Oxisol irrigated with treated sewage effluent. Agricultural Water Management, 88, 119–131. doi:10.1016/j.agwat.2006.10.018.

    Article  Google Scholar 

  • Goberna, M., Insam, H., Klammer, S., Pascual, J. A., & Sánche, J. (2005). Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microbial Ecology, 50, 315–326. doi:10.1007/s00248-005-0177-0.

    Article  CAS  Google Scholar 

  • Govaerts, B., Mezzalama, M., Unno, Y., Sayre, K. D., Luna-Guido, M., Vanherck, K., et al. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, 37, 18–30. doi:10.1016/j.apsoil.2007.03.006.

    Article  Google Scholar 

  • Dourado-Neto, D., Nielsen, D. R., Hopmans, J. W., Reichardt, K., & Bacchi, O. O. S. (2000). Software to model soil water retention curves (SWRC, version 2.00). Science in Agriculture, 57, 191–192. doi:10.1590/S0103-90162000000100031.

    Google Scholar 

  • Haack, S. K., Garchow, H., Klug, M., & Forney, L. J. (1995). Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Applied and Environmental Microbiology, 61, 1458–1468.

    CAS  Google Scholar 

  • Hidalgo, D., Irusta, R., Martinez, L., Fatta, D., & Papadopoulos, A. (2007). Development of a multi-function software decision support tool for the promotion of the safe reuse of treated urban wastewater. Desalination, 215, 90–103. doi:10.1016/j.desal.2006.09.028.

    Article  CAS  Google Scholar 

  • Hitzl, W., Henrich, M., Kessel, M., & Insam, H. (1997). Application of multivariate analysis of variance and related techniques in soil studies with substrate utilization tests. Journal of Microbiological Methods, 30, 8–89. doi:10.1016/S0167-7012(97) 00047-X.

    Article  Google Scholar 

  • Ibekwe, A. M., Grieve, C. M., & Lyon, S. R. (2003). Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Applied and Environmental Microbiology, 69, 5060–5069. doi:10.1128/AEM.69.9.5060-5069.2003.

    Article  CAS  Google Scholar 

  • Insam, H., Amor, K., Renner, M., & Crepaz, C. (1996). Changes in functional abilities of the microbial community during composting of manure. Microbial Ecology, 31, 77–87. doi:10.1007/BF00175077.

    Article  Google Scholar 

  • Lindström, J. E., Barry, R. P., & Braddock, J. F. (1998). Microbial community analysis: a kinetic approach to constructing potential C source utilization patterns. Soil Biology & Biochemistry, 30, 231–239. doi:10.1016/S0038-0717(97) 00113-2.

    Article  Google Scholar 

  • Manly, B. F. J. (2005). Multivariate statistical methods - a primer (3rd ed.). Florida, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Marris, E. (2008). More crop per drop. Nature, 452, 273–277. doi:10.1038/452273a.

    Article  CAS  Google Scholar 

  • Nelson, D. R., & Mele, P. M. (2007). Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biology & Biochemistry, 39, 340–351.

    Google Scholar 

  • Preston-Mafham, J. P., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique. FEMS Microbiology Ecology, 42, 1–14.

    Google Scholar 

  • Primer-E Ltd. (2001). Primer 5 for Windows, Release 5.2.6. Ivybridge: Primer-E.

    Google Scholar 

  • Ramirez-Fuentes, E., Lucho-Constantino, C., Escamilla-Silva, E., & Dendooven, L. (2002). Characteristics, and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time. Bioresource Technology, 85, 79–187. doi:10.1016/S0960-8524(02) 00035-4.

    Article  Google Scholar 

  • Rietz, D. N., & Haynes, R. J. (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology & Biochemistry, 35, 845–854. doi:10.1016/S0038-0717(03) 00125-1.

    Article  CAS  Google Scholar 

  • Robertson, G. P., & Groffman, P. M. (2007). Nitrogen transformations. In A. E. Paul (Ed.), Soil microbiology, ecology and biochemistry, pp. 341–364. Burlington Oxford: Academic Press/Elservier.

    Google Scholar 

  • Ros, M., Goberna, M., Moreno, J. L., Hernandez, T., García, C., Insam, H., et al. (2006). Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different. Applied Soil Ecology, 34, 93–102. doi:10.1016/j.apsoil.2006.03.010.

    Article  Google Scholar 

  • Rusan, M. J. M., Hinnawi, S., & Rousan, L. (2007). Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination, 215, 143–152. doi:10.1016/j.desal.2006.10.032.

    Article  Google Scholar 

  • Salgot, M., Huertas, E., Weber, S., Dott, W., & Hollender, J. (2006). Wastewater reuse and risk: definition of key objectives. Desalination, 187, 29–40. doi:10.1016/j.desal.2005.04.065.

    Article  CAS  Google Scholar 

  • SAS Institute. (1999). SAS System Release 8.02. Cary: The SAS Institute.

    Google Scholar 

  • Toze, S. (2006). Reuse of effluent water–benefits and risks. Agricultural Water Management, 80, 147–159. doi:10.1016/j.agwat.2005.07.010.

    Article  Google Scholar 

  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Google Scholar 

  • van Raij, B., Quaggio, J. A., Cantarella, H., & Andrade, J. C. (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas, Brazil: Instituto Agronômico.

    Google Scholar 

  • von Sperling, M. (2002). Lagoas de estabilização (134p). Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais.

    Google Scholar 

  • Warrington, D. N., Goldstein, D., & Levy, G. J. (2007). Clay translocation within the soil profile as affected by intensive irrigation with treated wastewater. Soil Science, 172, 692–700. doi:10.1097/SS.0b013e3180d0a43d.

    Article  CAS  Google Scholar 

  • Werner, J. C., Paulino, V. T., Cantarella, H., Andrade, N. O., & Quaggio, J. A. (1996). Forrageiras. In B. van Raij, H. Cantarella, J. A. Quaggio & A. M. C. Furlani (Eds.), Recomendações de adubação e calagem para o Estado de São Paulo (2nd ed.), pp. 263–273. Campinas: Instituto Agronômico. Boletim Técnico # 100.

    Google Scholar 

  • WHO. (1989). Health guidelines for the use of wastewater in agriculture and aquaculture. Geneva: WHO. (Technical Report Series n 778 74p).

    Google Scholar 

  • Zak, J. C., Willig, M. R., Moorehead, D. L., & Wildman, H. G. (1994). Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry, 26, 1101–1108. doi:10.1016/0038-0717(94) 90131-7.

    Article  Google Scholar 

  • Zhang, Y. L., Dai, J. L., Wang, R. Q., & Zhang, J. (2008). Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. European Journal of Soil Biology, 44, 84–91. doi:10.1016/j.ejsobi.2007.10.003.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and by Companhia de Saneamento Básico do Estado de São Paulo (Sabesp). We would like to thank Dr. C.R. Montes for her helpful collaboration in this research project, and Dr. C.R.D. Maluche-Baretta for her helpful discussion on the statistical analysis. A.M. de Paula and E.J.B.N. Cardoso were sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. B. N. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paula, A.M., da Fonseca, A.F., Cardoso, E.J.B.N. et al. Microbial Metabolic Potential Affected by Surplus Wastewater Irrigation in Tropical Soil Cultivated with Tifton 85 Bermuda Grass (Cynodon dactylon Pers. X C. niemfuensis Vanderyst). Water Air Soil Pollut 205, 161–171 (2010). https://doi.org/10.1007/s11270-009-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0063-3

Keywords

Navigation