Skip to main content

Advertisement

Log in

Arsenic Risk Assessment: The Importance of Speciation in Different Hydrologic Systems

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The processes impacting arsenic toxicity are a function of molecular speciation, where risk from chronic exposure to the reduced arsenic species is estimated to be four orders of magnitude higher than many oxidized arsenic species. While the adverse health effects of arsenic are generally well known, the impact of speciation on carcinogenic and noncarcinogenic adverse health effects has rarely, if ever, been considered in traditional chronic arsenic exposure risk assessments. Utilizing standard Environmental Protection Agency protocol, lifetime cancer risk and hazard quotient are calculated for chronic arsenic exposure at the local, regional, and national scale to characterize potential risk as a function of arsenic speciation. Additionally, the antagonistic and synergistic impacts of biogeochemical processes on arsenic bioavailability and bioaccessibility are discussed and show chronic exposure risk is likely to be reduced below some maximum value calculated for reduced arsenic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Cancer Society. (2007). Cancer Facts & Figures 2007. Atlanta, GA: American Cancer Society. http://www.cancer.org/ downloads/STT/CAFF2007PWsecured.pdf

  • Anderson, L. C. D., & Bruland, K. W. (1991). Biogeochemistry of arsenic in natural waters: The importance of methylated species. Environmental Science & Technology, 25(3), 420–427. doi:10.1021/es00015a007.

    Article  CAS  Google Scholar 

  • Andreae, M. O. (1979). Arsenic speciation in seawater and interstitial waters: The influence of biological–chemical interactions on the chemistry of a trace element. Limnology and Oceanography, 24(3), 440–452.

    CAS  Google Scholar 

  • Aurillo, A. C., Mason, R. P., & Hemond, H. F. (1994). Speciation and fate of arsenic in three lakes of the Aberjona Watershed. Environmental Science & Technology, 28, 577–585. doi:10.1021/es00053a008.

    Article  Google Scholar 

  • Azcue, J. M., & Nriagu, J. O. (1995). Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. Journal of Geochemical Exploration, 52, 81–89. doi:10.1016/0375-6742(94)00032-7.

    Article  CAS  Google Scholar 

  • Chen, S.-L., Dzeng, S. R., Yang, M.-H., Chiu, K. H., Shleh, G.-M., & Wai, C. M. (1994). Arsenic species in groundwaters of the Blackfoot Disease Area, Taiwan. Environmental Science & Technology, 28, 877–881. doi:10.1021/es00054a019.

    Article  CAS  Google Scholar 

  • Del Razo, L. M., Arellano, M. A., & Cebrián, M. E. (1990). The oxidation states of arsenic inwell-water from a chronic arsenicism area of northern Mexico. Environmental Pollution, 64, 143–153. doi:10.1016/0269-7491(90)90111-O.

    Article  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 37, 4182–4189. doi:10.1021/es030309t.

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet, F., Dupuy, C., Cruzado, Z. V., Achterberg, E. P., & Braungardt, B. (2000). Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto River, Spain). Water Research, 34(12), 3222–3230. doi:10.1016/S0043-1354(00)00073-7.

    Article  CAS  Google Scholar 

  • Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology, 40, 128–135. doi:10.1007/s002440010155.

    Article  CAS  Google Scholar 

  • Fendorf, S., La Force, M. J., & Guangchao, L. (2004). Heavy metals in the environment: Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium and lead. Journal of Environmental Quality, 33, 2049–2055.

    Article  CAS  Google Scholar 

  • Fujii, R., & Swain, W. C. (1995). Areal distribution of selected trace elements, salinity and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California. US. U.S. Geologic Survey Water Resources Investigation. Sacramento, CA: USGS.

    Google Scholar 

  • Gihring, T. M., Druschel, G. K., McCleske, R. B., Hamers, R. J., & Banfield, J. F. (2001). Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environmental Science & Technology, 35, 3857–3862.

    Article  CAS  Google Scholar 

  • Gong, Z., Lu, X., Cullen, W. R., & Le, C. L. (2001). Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid. Journal of Analytical Atomic Spectrometry, 16, 1409–1413. doi:10.1039/b105834g.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil forthree-level risk assessment and risk management. Science of the Total Environment, 178, 11–20. doi:10.1016/0048-9697(95)04792-1.

    Article  CAS  Google Scholar 

  • Hasegawa, H., Sohrin, Y., Seki, K., Sato, K., Norisuye, K., Naito, K., et al. (2001). Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae. Chemosphere, 43, 265–272. doi:10.1016/S0045-6535(00)00137-5.

    Article  CAS  Google Scholar 

  • He, W., Megharaj, M., & Naidu, R. (2008). Toxicity oftri- andpenta-valent arsenic, alone and in combination, to the cladoceran Daphnia carinata: the influence of microbial transformation in natural waters. Environmental Geochemistry and Health, Electronic Publication, http://www.ncbi.nlm.nih.gov/pubmed/19101806.

  • Hirano, S., Cui, X., Li, S., Kanno, S., Kobayashi, Y., Hayakawn, T., et al. (2003). Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells. Archives of Toxicology, 77(6), 305–312.

    CAS  Google Scholar 

  • Hirano, S., Kobayashi, Y., Cui, X., Hayakawa, T., & Shraim, A. (2004). The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicology and Applied Pharmacology, 198(3), 458–467. doi:10.1016/j.taap. 2003.10.023.

    Article  CAS  Google Scholar 

  • Hongshao, Z., & Stanforth, R. (2001). Competitive adsorption of phosphate and arsenate on goethite. Environmental Science & Technology, 35, 4753–4757. doi:10.1021/es010890y.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34, 4304–4312. doi:10.1016/S0043-1354(00)00182-2.

    Article  CAS  Google Scholar 

  • Kneebone, P. E., O'Day, P. A., Jone, N., & Hering, J. G. (2002). Deposition and fate of arsenic iniron- andarsenic-enriched reservoir sediments. Environmental Science & Technology, 36, 381–386. doi:10.1021/es010922h.

    Article  CAS  Google Scholar 

  • Kuroiwa, T., Yoshihiko, I., Ohki, A., Naka, K., & Maeda, S. (1995). Tolerance, bioaccumulation and biotransformation of arsenic in freshwater prawn (Macrobrachium rosenbergii). Applied Organometallic Chemistry, 9(7), 517–523. doi:10.1002/aoc.590090704.

    Article  CAS  Google Scholar 

  • La Force, M. J., Hansel, C. M., & Fendorf, S. (2000). Arsenic speciation, seasonal transformations andco-distribution with iron in a minewaste-influenced palustrine emergent wetland. Environmental Science & Technology, 34, 3937–3943. doi:10.1021/es0010150.

    Article  CAS  Google Scholar 

  • Low, D. J., & Galeone, D. G. (2007). Reconnaissance of arsenic concentrations in groundwater from bedrock and unconsolidated aquifers in eightnorthern-tier counties of Pennsylvania. Reston, VA: U.S. Department of the Interior, U.S. Geologic Survey.

    Google Scholar 

  • Mandal, B. K., Chowdhury, T. R., Samanta, G., Mukherjee, D. P., Chanda, C. R., Saha, K. C., et al. (1998). Impact of safe water for drinking and cooking on fivearsenic-affected families for 2 years in West Bengal, India. Science of the Total Environment, 218, 185–201. doi:10.1016/S0048-9697(98)00220-4.

    Article  CAS  Google Scholar 

  • Markley, C. T., & Herbert, B. E. (2006). Complexity of arsenic biogeochemistry in surface water systems as influenced by a hydrologic event. AGU Fall Meeting. San Francisco, CA: American Geophysical Union.

    Google Scholar 

  • McGeachy, S. M., & Dixon, D. G. (1989). Impact of temperature on the acute toxicity of arsenate and arsenite to rainbow trout (Salmo gairdneri). Ecotoxicology and Environmental Safety, 17(1), 86–93. doi:10.1016/0147-6513(89)90012-2.

    Article  CAS  Google Scholar 

  • Michel, P., Boutier, B., Herbland, A., Averty, B., Artigas, L. F., Auger, D., et al. (1997). Behaviour of arsenic in the continental shelf off the Gironde estuary: role of phytoplankton in vertical fluxes during spring bloom conditions. Oceanologica Acta, 21(2), 325–333. doi:10.1016/S0399-1784(98)80019-4.

    Article  Google Scholar 

  • National Research Council. (1999). Arsenic in drinking water. Washington, DC: National Academy.

    Google Scholar 

  • Nicolli, H. B., Suriano, J. M., Peral, M. A. G., Ferpozzi, L. H., & Baleani, O. A. (1989). Groundwater contamination with arsenic and othertrace-elements in an area of the Pampa, province of Córdoba, Argentina. Environmental Geology and Water Sciences, 14, 3–16. doi:10.1007/BF01740581.

    Article  CAS  Google Scholar 

  • Nikolaidis, N. P., Dobbs, G. M., Chen, C., & Lackovic, J. A. (2004). Arsenic mobility in contaminated lake sediments. Environmental Pollution, 129, 479–487. doi:10.1016/j.envpol.2003.11.005.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in groundwater. Science, 296, 2143–2144. doi:10.1126/science.1072375.

    Article  CAS  Google Scholar 

  • Oremland, R. S., & Stoltz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944. doi:10.1126/science.1081903.

    Article  CAS  Google Scholar 

  • Petrick, J. S.,Ayala-Fierro, F., Cullen, W. R., Carter, D. E., & Aposhian, V. (2000). Monomethylarsonous Acid (MMA3+) is more toxic than arsenite in Chang Human Hepatocytes. Toxicology and Applied Pharmacology, 163(2), 203–207. doi:10.1006/taap. 1999.8872.

    Article  CAS  Google Scholar 

  • Rapant, S., & Krčmová, K. (2007). Health risk assessment maps for arsenic groundwater content: application of national goechemical databases. Environmental Geochemistry and Health, 29, 131–141. doi:10.1007/s10653-006-9072-y.

    Article  CAS  Google Scholar 

  • Romach, E. H., Zhao, C. Q., Del Razo, L. M., Cebrián, M. E., & Waalkes, M. P. (2000). Studies on the mechanisms ofarsenic-induced self tolerance developed in liver epithelial cells through continuouslow-level arsenite exposure. Toxicological Sciences, 54, 500–508. doi:10.1093/toxsci/54.2.500.

    Article  CAS  Google Scholar 

  • Ryker, S. J. (2001). Mapping arsenic in groundwater. Geotimes, 46(11), 34–36.

    Google Scholar 

  • Sakurai, T. (2003). Biomethylation of arsenic is essentially detoxifying event. Journal of Health Science, 49(3), 171–178. doi:10.1248/jhs.49.171.

    Article  CAS  Google Scholar 

  • Salisbury, H.M. (2006). Evaluation of a transgenic zebrafish model for assessing arsenic toxicity. Master of Science thesis, Department of Toxicology, University of Saskatchewan.

  • Seyler, P., & Marting, J.-M. (1989). Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake. Environmental Science & Technology, 23, 1258–1263. doi:10.1021/es00068a012.

    Article  CAS  Google Scholar 

  • Shaw, J. R., Glaholt, S. P., Greenberg, N. S.,Sierra-Alvarez, R., & Folt, C. L. (2007). Acute toxicity of arsenic to Daphnia pulex: Influence of organic functional groups and oxidation state. Environmental Toxicology and Chemistry, 26(7), 1532–1537. doi:10.1897/06-389R.1.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). The review of source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284. doi:10.1016/S0883-2927(01)00082-8.

    Article  CAS  Google Scholar 

  • Sohrin, Y., Matsui, M., Kawashima, M., Hojo, M., & Hasegawa, H. (1997). Arsenic biogeochemistry affected by eutrophication in Lake Biwa, Japan. Environmental Science & Technology, 31, 2712–2720. doi:10.1021/es960846w.

    Article  CAS  Google Scholar 

  • Stedge, G. D. (2000). Arsenic in drinking water rule economic analysis. Bethesda, MD: Abt Associates Inc.

    Google Scholar 

  • Suhendrayatna,, Ohki, A., Nakajima, T., & Maeda, S. (2002). Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes. Chemosphere, 46(2), 319–324. doi:10.1016/S0045-6535(01)00084-4.

    Article  CAS  Google Scholar 

  • Teruaki, S., & Kitao, K. (2003). Nutrition and toxicity of trace elements in immune function systemsarsenic-induced apoptosis in macrophages. Biomedical Research on Trace Elements, 14(4), 259–263.

    Google Scholar 

  • Tseng, W. P. (1977). Effects anddose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109–119. doi:10.2307/3428460.

    Article  CAS  Google Scholar 

  • U.S. Department of Energy. (1995). Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas. Albuquerque, NM: United States Department of Energy.

    Google Scholar 

  • Geological Survey, U. S. (2004). National Uranium Resource Evaluation (NURE) hydrogeochemical and stream sediment reconnaissance data. Denver, CO: U.S. Geological Survey.

    Google Scholar 

  • Wang, S. L., Chiou, J. M., Chen, C. J., Tseng, C. H., Chou, W. L., Wang, C. C., et al. (2003). Prevalence ofnon-insulin-dependent diabetes mellitus and related vascular diseases in southwesternarseniasis-endemic and nonendemic areas in Taiwan. Environmental Health Perspectives, 3(2), 155–159.

    Google Scholar 

  • Warner, K. L. (2001). Arsenic in glacial drift aquifers and the implication for drinking water—Lower Illinois River Basin. Ground Water, 39(3), 433–442. doi:10.1111/j.1745-6584.2001.tb02327.x.

    Article  CAS  Google Scholar 

  • Yang, J., Barnett, M. O., Jardine, P. M., Basta, N. T., & Castell, S. W. (2002). Adsorption, sequestration and bioaccessibility of As(V) in soils. Environmental Science & Technology, 36, 4562–4569. doi:10.1021/es011507s.

    Article  CAS  Google Scholar 

  • Yoshida, K., Inoue, Y., Kuroda, K., Chen, H., Wanibuchi, H., Fukushima, S., et al. (1998). Urinary excretion of arsenic metabolites afterlong-term oral administration of various arsenic compounds to rats. Journal of Toxicology and Environmental Health. Part A., 54, 179–192. doi:10.1080/009841098158890.

    Article  CAS  Google Scholar 

Download references

Disclaimer

One of the authors of this paper is an employee of the U.S. Nuclear Regulatory Commission (NRC). This work was completed while both authors were affiliated with Texas A&M University. Final revisions were completed during non-working hours while affiliated with the NRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Markley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markley, C.T., Herbert, B.E. Arsenic Risk Assessment: The Importance of Speciation in Different Hydrologic Systems. Water Air Soil Pollut 204, 385–398 (2009). https://doi.org/10.1007/s11270-009-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0052-6

Keywords

Navigation