Skip to main content

Advertisement

Log in

Enhancement of Arsenic(III) Sequestration by Manganese Oxides in the Presence of Iron(II)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Mobilization of arsenic (As) in the subsurface environment can result in elevated concentrations of As in groundwater and potential human exposure and adverse health effects. Natural attenuation (i.e., sequestration) of As may, under appropriate geochemical conditions, serve to limit human exposure to As. The effectiveness of As sequestration by sorption, co-precipitation, and/or precipitation can be strongly influenced by redox conditions, which can control the solubility of sorbent phases and the stability of As-containing solids. The redox transformation of As between the +III and +V oxidation states can also affect the extent of As sorption. The effect of amendment with synthetic manganese (Mn) oxide birnessite (nominally MnO2) on As sequestration in a sediment suspension was examined in the absence and presence of iron (Fe) added as Fe(II). In the absence of Fe(II), the extent of As(III) oxidation to As(V) increased with increasing birnessite amendment, but As sequestration was not increased. In the presence of Fe(II), however, As sequestration did increase with increasing birnessite amendment. Concurrently, Fe(II) was also sequestered, and the Fe(III) content of the solid phase was observed to increase, suggesting that the oxidative precipitation of an Fe(III) oxyhydroxide phase plays an important role in As sequestration. These results suggest that amendment with Mn(III, IV) oxides could be an effective way to augment natural attenuation of As in cases where As-contaminated groundwater also contains elevated concentrations of Fe(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amirbahman, A., Kent, D. B., Curtis, G. P., & Davis, J. A. (2006). Kinetics of Sorption and Abiotic Oxidation of Arsenic(III) by Aquifer Materials. Geochemical et Cosmochimica Acta, 70, 533–547. doi:10.1016/j.gca.2005.10.036.

    Article  CAS  Google Scholar 

  • Anschutz, P., Dedieu, K., Desmazes, F., & Chaillou, G. (2005). Speciation, oxidation state, and reactivity of particulate manganese in marine sediments. Chemical Geology, 218, 265–279. doi:10.1016/j.chemgeo.2005.01.008.

    Article  CAS  Google Scholar 

  • Berg, M. M., Luzi, S., Trang, P. T. K., Viet, P. H., Giger, W., & Stuben, D. (2006). Arsenic removal from groundwater by household sand filters: Comparative field study, model calculations, and health benefits. Environmental Science & Technology, 40, 5567–5573. doi:10.1021/es060144z.

    Article  CAS  Google Scholar 

  • Bostick, B. C., & Fendorf, S. (2003). Arsenite sorption on troilite (FeS) and Pyrite (FeS2). Geochemical et Cosmochimica Acta, 67, 909–921. doi:10.1016/S0016-7037(02)01170-5.

    Article  CAS  Google Scholar 

  • Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S., & Bhattacharjee, S. (2002). Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Research, 36, 625–632. doi:10.1016/S0043-1354(01)00234-2.

    Article  CAS  Google Scholar 

  • Chiu, V. Q., & Hering, J. G. (2000). Arsenic adsorption and oxidation at Manganite Surfaces. 1. method for simultaneous determination of adsorbed and dissolved arsenic species. Environmental Science & Technology, 34, 2029–2034. doi:10.1021/es990788p.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard methods for the examination of water and wastewater, Standard methods 3500-Fe B, American Water Works Association.

  • Deschamps, E., Ciminelli, V. S. T., Weidler, P. G. R., & Ramos, A. Y. (2003). Arsenic sorption onto soils enriched in Mn and Fe minerals. Clays and Clay Minerals, 51, 197–204. doi:10.1346/CCMN.2003.0510210.

    Article  CAS  Google Scholar 

  • Deschamps, E., Ciminelli, V. S. T., & Holl, W. H. (2005). Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Research, 39, 5212–5220. doi:10.1016/j.watres.2005.10.007.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2006). Sorption of Fe(II) and As(III) on goethite in single- and dual-sorbate systems. Chemical Geology, 228, 6–15. doi:10.1016/j.chemgeo.2005.11.015.

    Article  CAS  Google Scholar 

  • Driehaus, W., Seith, R., & Jekel, M. (1995). Oxidation of arsenate with manganese oxides in water treatment. Water Research, 29, 297–305. doi:10.1016/0043-1354(94)E0089-O.

    Article  CAS  Google Scholar 

  • Espana, J. S., Pamo, E. L., Pastor, E. S., Andres, J. R., & Rubi, J. A. M. (2005). The natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environmental Geology (Heidelberg, Germany), 49, 253–266. doi:10.1007/s00254-005-0083-2.

    Article  CAS  Google Scholar 

  • Fritzsche, A., Dienemann, H., & Dudel, E. G. (2006). Arsenic fixation on iron-hydroxide-rich and plant litter-containing sediments in natural environments. Environmental Geology, 51, 133–142. doi:10.1007/s00254-006-0315-0.

    Article  CAS  Google Scholar 

  • Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., & Ikeda, H. (2003). A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 18, 1267–1278. doi:10.1016/S0883-2927(03)00011-8.

    Article  CAS  Google Scholar 

  • Ghosh, R., Deutsch, W., Geiger, S., & McCarthy, K. B. D. (2003). Petroleum hydrocarbons and organic chemicals in groundwaters. American Petroleum Institute, National Ground Water Association, Costa Mesa, CA, 266–280 pp

  • Huang, J. H., & Matzner, E. (2006). Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochemical et Cosmochimica Acta, 70, 2023–2033. doi:10.1016/j.gca.2006.01.021.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., et al. (2004). Role of metal reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430, 68–71. doi:10.1038/nature02638.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from groundwaters. Water Research, 38, 17–26. doi:10.1016/j.watres.2003.09.011.

    Article  CAS  Google Scholar 

  • Lenoble, V., Laclautre, C., Serpaud, B., Deluchat, V., & Bollinger, J. (2004). As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin. The Science of the Total Environment, 326, 197–207. doi:10.1016/j.scitotenv.2003.12.012.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235. doi:10.1016/S0039-9140(02)00268-0.

    Article  CAS  Google Scholar 

  • Manning, B. A., Fendorf, S. E., Bostick, B., & Suarez, D. L. (2002). Arsenic(III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environmental Science & Technology, 36, 976–981. doi:10.1021/es0110170.

    Article  CAS  Google Scholar 

  • Matocha, C. J., Sparks, D. L. A., Amonette, J. E., & Kukkadapu, R. K. (2001). Kinetics and mechanisms of birnessite reduction by catechol. Soil Science Society of America Journal, 65, 58–66.

    CAS  Google Scholar 

  • Moore, J. N., Walker, J. R., & Hayes, T. H. (1990). Reaction scheme for the oxidation of As(III) to As(V) by birnessite. Clays and Clay Minerals, 38, 549–555. doi:10.1346/CCMN.1990.0380512.

    Article  CAS  Google Scholar 

  • Nickson, N. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413. doi:10.1016/S0883-2927(99)00086-4.

    Article  CAS  Google Scholar 

  • Oscarson, D. W., Huang, P. W., & Liaw, W. K. (1980). The oxidation of arsenate by aquatic sediments. Journal of Environmental Quality, 9, 700–703.

    Article  CAS  Google Scholar 

  • Oscarson, D. W., Huang, P. M., Defosse, C., & Herbillon, A. (1981). Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. Nature, 291, 50–51. doi:10.1038/291050a0.

    Article  CAS  Google Scholar 

  • Ouvard, S., Donato, P. D., Simonnot, M. O., Begin, S., & Ghanbaja, J. (2005). Natural manganese oxide: combined analytical approach for solid characterization and arsenic retention. Geochemical et Cosmochimica Acta, 69, 2715–2724. doi:10.1016/j.gca.2004.12.023.

    Article  CAS  Google Scholar 

  • Postma, D. (1985). Concentration of Mn and separation from Fe in sediments—I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochemical et Cosmochimica Acta, 49, 1023–1033. doi:10.1016/0016-7037(85)90316-3.

    Article  CAS  Google Scholar 

  • Postma, D., & Appelo, C. A. J. (2000). Reduction of Mn-oxides by ferrous iron in a flow system: Column experiment and reactive transport modeling. Geochemical et Cosmochimica Acta, 64, 1237–1247. doi:10.1016/S0016-7037(99)00356-7.

    Article  CAS  Google Scholar 

  • Powell, R. M., Puls, R. W., & Blowes, D. W., Gillham, R. W., and Vogan, J. L. (1998). Permeable reactive barrier technologies for contaminant remediation, Office of Research and Development, Washington DC 20460, EPA/600/R-98/125.

  • Puls, R. W. (1997). Permeable reactive subsurface barriers for the interception and remediation of chlorinated hydrocarbon and Chromium(VI) plumes in ground water, National Risk Management Research Laboratory, EPA/600/F-97/008.

  • Reisinger, H. J., Burris David, R., & Hering Janet, G. (2005). Remediating subsurface arsenic contamination with monitored natural attenuation. Environmental Science & Technology, 39, 458A–464A. doi:10.1021/es053388c.

    Article  Google Scholar 

  • Roberts, L. C., Hug, S. J., Ruettimann, T., Billah, M. M., Khan, A. W., & Rahman, M. T. (2004). Arsenic removal with Iron(II) and Iron(III) in waters with high silicate and phosphate concentrations. Environmental Science & Technology, 38, 307–315. doi:10.1021/es0343205.

    Article  CAS  Google Scholar 

  • Scott, M. J., & Morgan, J. J. (1995). Reactions at oxide surfaces. 1. Oxidation of As(III) by Synthetic Birnessite. Environmental Science & Technology, 29, 1898–1905. doi:10.1021/es00008a006.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburg, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Stollenwerk, K. G., & Colman, J. A. (2003). Natural remediation potential of arsenic contaminated groundwater. In A. H. Welch, & K. G. Stollenwerk (Eds.), Arsenic in groundwater (pp. 351–379). Boston: Kluwer Academic.

    Chapter  Google Scholar 

  • Swartz, C. H., Blute, N. K., Badruzzman, B., Ali, A., Brabander, D., Jay, J. B., et al. (2004). Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochemical et Cosmochimica Acta, 68, 4539–4557. doi:10.1016/j.gca.2004.04.020.

    Article  CAS  Google Scholar 

  • Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., & Soma, M. (2004). Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21–2. Environmental Science & Technology, 38, 6618–6624. doi:10.1021/es049226i.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., Subramanian, K. S., Chaalal, O., & Islam, M. R. (2005). Arsenic removal in drinking water—impacts and novel removal technologies. Energy Sources, 27, 209–219. doi:10.1080/00908310490448271.

    Article  CAS  Google Scholar 

  • Tournassat, C., Charlet, L., Bosbach, D., & Manceau, A. (2002). Arsenic (III) oxidation by birnessite and precipitation of manganese arsenate. Environmental Science & Technology, 36, 493–500. doi:10.1021/es0109500.

    Article  CAS  Google Scholar 

  • USEPA (1999). Use of monitored natural attenuation at Superfund sites, Office of Solid Waste and Emergency Response, OSWER Directive 9200.4–17P, 12–13 pp

  • USEPA (2007). Monitored Natural Attenuation of Inorganic Contaminants in Ground Water: Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium, EPA/600/R-07/140, http://www.epa.gov/ada/download/reports/600R07140/600R07140.pdf

  • Viraraghavan, T., Subramanian, K. S., & Aruldoss, J. A. (1999). Arsenic in drinking water-problems and solutions. Water Science and Technology, 40, 69–76. doi:10.1016/S0273-1223(99)00432-1.

    Article  CAS  Google Scholar 

  • Yang, J., Barnett, M. O., Zhuang, J., Fendorf, S. E., & Jardine, P. M. (2005). Adsorption, oxidation, and bioaccessibility of As(III) in soils. Environmental Science & Technology, 39, 7102–7110. doi:10.1021/es0481474.

    Article  CAS  Google Scholar 

  • Zhang, G., Qu, J., Liu, H., Liu, R., & Li, G. (2007). Removal mechanism of Standard methods 3500-Fe B As(III) by a novel Fe–Mn binary oxide adsorbent: oxidation and sorption. Environmental Science & Technology, 41, 4613–4619. doi:10.1021/es063010u.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Strategic Environmental Research and Development Program (SERDP ER-1374). The authors would like to acknowledge Integrated Science and Technology, Inc. for assistance with sediment sampling. We also want to thank Drs. Kate Campbell and Nathan Dalleska for their help with LC-ICP-MS for arsenic analysis and speciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Thomas He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y.T., Hering, J.G. Enhancement of Arsenic(III) Sequestration by Manganese Oxides in the Presence of Iron(II). Water Air Soil Pollut 203, 359–368 (2009). https://doi.org/10.1007/s11270-009-0018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0018-8

Keywords

Navigation