Skip to main content

Advertisement

Log in

Evaluation of Microbial Community Activity, Abundance and Structure in a Semiarid Soil Under Cadmium Pollution at Laboratory Level

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Cadmium (Cd) pollution can alter soil flora and fauna, as well as the microbial community associated with the main biogeochemical cycles of a soil. The present study was conducted to investigate the effect of two different concentrations of Cd pollutant, 6.5 mg kg−1 (low level) and 12.5 mg kg−1 (high level) on microbial community activity, abundance, and structure in a semiarid soil after a 60-day incubation period at laboratory level. Available Cd, water soluble carbon (WSC), microbial biomass carbon (Cmic), adenosine triphosphate (ATP) content, and real-time polymerase chain reaction were used to measure the influence of Cd on the abundance and activity of the microbial community. Bacteria and fungi community structure and diversity based on denaturing gradient gel electrophoresis (DGGE) analysis were also analyzed. The percentage of Cd extracted by diethylenetriamine pentaacetic acid increased with the higher total concentration of Cd added to the soil, being 16.9% at low level and 77.9% at the high level. WSC, Cmic, and ATP content decreased significantly as soil Cd concentration increased (WSC 29% and 34%, Cmic 27% and 35%, and ATP 32% and 47%, at low and high levels, respectively). While fungal diversity already decreased with low levels of Cd concentration, and was even more negatively affected by the higher pollution levels, bacterial (acidobacteria, α-proteobacteria, and β proteobacteria) diversity only showed a decline with the higher Cd concentration. The fungi-to-bacteria ratio showed by the different treatments could imply that fungi abundance is less influenced by increased Cd pollution, although fungi diversity as revealed by DGGE analysis diminished as soil Cd concentration increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar, J., Dorronso, C., Gomez-Ariz, J. L., & Galan, E. (1999). Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestras y análisis para su investigación. In: Universidad de Sevilla (Ed.), Investigación y desarrollo medioambiental en Andalucía, Sevilla, Spain (pp. 45–59).

  • Albadalejo, J., Martinez-Mena, M., & Roldan, A. V. (1998). Soil degradation and desertification induced by devegetation removal in semiarid environment. Soil Use and Management, 14, 1–5. doi:10.1111/j.1475-2743.1998.tb00602.x.

    Article  Google Scholar 

  • Alloway, B. J. (1995). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soil (pp. 122–151). Suffolk: Chapman and Hall.

    Google Scholar 

  • Arretxe, M., Heap, J. M., & Christofi, N. (1997). The effect of toxic discharges on ATP content in activated sludge. Environmental Toxicology and Water Quality, 12, 23–29. doi:10.1002/(SICI)1098-2256(1997)12:1<23::AID-TOX4>3.0.CO;2-A.

    Article  CAS  Google Scholar 

  • Bááth, E., Arnebrant, K., & Nordgren, A. (1991). Microbial biomass and ATP in smelter-polluted forest humus. Archives of Environmental Contamination and Toxicology, 47, 278–282. doi:10.1007/BF01688652.

    Article  Google Scholar 

  • Boon, N., De Windt, W., Verstraete, W., & Top, E. M. (2002). Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers fro the analysis of bacterial communities from different wastewater treatments plants. FEMS Microbiology Ecology, 39, 101–112.

    CAS  Google Scholar 

  • Boyer, S. L., Flechtner, V. R., & Johansen, J. R. (2001). Is the 16S-23S r RNA internal transcribed spacer region a good tool for use in molecular systematic and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution, 18, 1057–1069.

    CAS  Google Scholar 

  • Ceccanti, B., & Garcia, C. (1994). Coupled chemical and biochemical methodologies to characterize a composting process and the humic substances. In N. Senesi, & T. M. Miano (Eds.), Humic substances in the global environment and implications on human health (pp. 1279–1284). Amsterdam: Elsevier.

    Google Scholar 

  • Ciardi, C., & Nannipieri, P. (1990). A comparison of methods for measuring ATP in soil. Soil Biology & Biochemistry, 22, 725–727. doi:10.1016/0038-0717(90)90022-R.

    Article  CAS  Google Scholar 

  • Dice, L. R. (1945). Measures on the amount of ecologic association between species. Ecology, 26, 297–302. doi:10.2307/1932409.

    Article  Google Scholar 

  • Eriksson, M., Ka, J. O., & Mohn, W. W. (2001). Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Antartic tundra soil. Applied and Environmental Microbiology, 67, 5107–5112. doi:10.1128/AEM.67.11.5107-5112.2001.

    Article  CAS  Google Scholar 

  • Flieβbach, A., Martens, R., & Reber, H. H. (1994). Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology & Biochemistry, 26, 1201–1205.

    Article  Google Scholar 

  • Frey, B., Stemmer, M., Widmer, F., Luster, J., & Sperisen, C. (2006). Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biology & Biochemistry, 38, 1745–1756.

    Article  CAS  Google Scholar 

  • Giller, K., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology & Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Girva, M. S., Campbell, C. D., Killham, K., Prosser, J. L., & Glover, L. A. (2005). Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology, 7, 301–313.

    Article  Google Scholar 

  • Guisquiani, P. L., Concezzi, L., Businelli, M., & Macchinoni, A. (1998). Fate of pig sludge liquid fraction in calcareous soil: agricultural and environmental implications. Journal of Environmental quality, 27, 364–371.

    Article  Google Scholar 

  • Hattori, H. (1992). Influence of heavy metals on soil microbial activities. Soil Science and Plant Nutrition, 38, 93–100.

    CAS  Google Scholar 

  • Head, I. M., Hiorns, W. D., Embley, T. M., McCarthy, A. J., & Saunders, J. R. (1993). The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of general Microbiology, 139, 1147–1153.

    CAS  Google Scholar 

  • Heuer, H., & Smalla, K. (1997). Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities. In J. D. Van Elsas, J. T. Trevors, & E. M. H. Wellington (Eds.), Modern soil microbiology (pp. 353–373). New York: Marcel Dekker.

    Google Scholar 

  • Hill, T. C. J., Walsh, K. A., Harris, J. A., & Moffett, B. F. (2003). Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology, 43, 1–11.

    Article  CAS  Google Scholar 

  • Hiroki, M. (1992). Effects of heavy-metal contamination on soil microbial-population. Soil Science and Plant Nutrition, 38, 141–147.

    CAS  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16SrRNA genes. Applied & Environmental Microbiology, 71, 1719–1728.

    Article  CAS  Google Scholar 

  • Kandeler, E., Tscherko, D., Bruce, K. D., Stemmer, M., Hobbs, P. J., Bardgett, R. D., et al. (2000). Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, 32, 390–400.

    Article  CAS  Google Scholar 

  • Landi, I., Renella, G., Moreno, J. L., Falchini, L., & Nannipieri, P. (2000). Influence of Cd on the metabolic quotient, L-D-glutamic acid respiration ratio and enzyme activity: microbial biomass ratio under laboratory conditions. Biology and Fertility of Soils, 32, 8–16.

    Article  CAS  Google Scholar 

  • Lazzaro, A., Hartmann, M., Blazer, P., Widmer, F., Schulli, R., & Frey, B. T. (2006). Bacterial comunity structure and activity in different Cd-treated forest soils. FEMS Microbiology Ecology, 58, 278–292.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norwell, W. A. (1978). Development of DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    CAS  Google Scholar 

  • Lofts, S., Spurgeon, D. J., Svendsen, C., & Tipping, E. (2004). Deriving soil critical limits for Cu, Zn, Cd and Pb: a method based on free ion concentrations. Environmental Science & Technology, 38, 3623–3631.

    Article  CAS  Google Scholar 

  • Moreno, J. L., Garcia, C., Landi, L., Falcchini, F., Pietramellara, G., & Nannipieri, P. (2001). The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biology & Biochemistry, 33, 483–489.

    Article  CAS  Google Scholar 

  • Moreno, J. L., Hernandez, T., Perez, A., & Garcia, C. (2002). Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Applied Soil Ecology, 21, 149–158.

    Article  Google Scholar 

  • Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  • Nannipieri, P., Grego, S., & Ceccanti, B. (1990). Ecological significance of the biological activity in soil. In J. M. Bollag & G. Stotzky (Eds.), Soil biochemistry (vol. 6, pp. 293–355). New York: Dekker.

    Google Scholar 

  • Niklinska, M., Laskowski, R., & Maryanski, M. (1998). Effect of heavy metals and storage time on two types of forest litter: basal respiration rate and exchangeable metals. Ecotoxicology and Environmental Safely, 41, 8–18.

    Article  CAS  Google Scholar 

  • Nolan, A. L., McLaughlin, M. J., & Mason, S. D. (2003). Chemical separation of Zn, cd, Cu and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Environmental Science & Technology, 37, 90–98.

    Article  CAS  Google Scholar 

  • Parr, J. F., & Papendick, R. I. (1997). Soil quality: relationship and strategies for sustainable dry land farming systems. Annals of Arid Zones, 36, 181–191.

    Google Scholar 

  • Prokop, Z., Cupr, P., Zlevorova-Zlamalikova, V., Komarek, J., Dusek, L., & Holoubek, I. (2003). Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environmental Research, 91, 119–126.

    Article  CAS  Google Scholar 

  • Ranjard, L., Richaume, A., Jocteur-Monrozier, L., & Nazaret, S. (1997). Response of soil bacteria to Hg (II) in relation to soil characteristics and cell location. FEMS Microbiology Ecology, 24, 321–331.

    Article  CAS  Google Scholar 

  • Renella, G., Ortigoza, A. L. R., Landi, L., & Nannipieri, P. (2003). Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biology & Biochemistry, 35, 1203–1210.

    Article  CAS  Google Scholar 

  • Renella, G., Mench, M., van der Lelie, D., Pietramellara, G., Ascher, J., Ceccherini, M. T., et al. (2004). Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biology & Biochemistry, 36, 443–451.

    Article  CAS  Google Scholar 

  • Salles, J., van Veen, J. A., & van Elsas, J. D. (2004). Multivariate analyses of Burkholderia species in soil: Effect of crop and land use history. Applied and Environmental Microbiology, 70, 4012–4020.

    Article  CAS  Google Scholar 

  • Sauvé, S., Dumestre, A., McBride, M., & Hendershot, W. (1998). Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environmental Toxicology and Chemistry, 17, 1481–1489.

    Article  Google Scholar 

  • Seghers, D., Verthe, K., Reheul, D., Bulcke, R., Siciliano, S. D., Verstraete, W., et al. (2003). Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microbiology Ecology, 1566, 1–8.

    Google Scholar 

  • Shoun, H., Kim, D. H., Uchiyama, H., & Sugiyama, J. (1992). Denitrification by fungi. FEMS Microbiology Letters, 93, 177–180.

    Article  Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Smit, E., Leeflang, P., Gommands, S., van de Broek, J., van Mil, S., & Wernars, K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 67, 2284–2291.

    Article  CAS  Google Scholar 

  • Smolders, E., Brans, K., & Merckx, R. (1999). Cadmium fixation in soils measured by isotopic dilution. Soil Science Society of America Journal, 63, 78–85.

    CAS  Google Scholar 

  • Torsvik, V., Ovreas, L., & Thingstad, T. (2002). Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science, 296, 1064–1066.

    Article  CAS  Google Scholar 

  • Vainio, E. J., & Hantula, J. (2000). Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycological Research, 104, 927–936.

    Article  CAS  Google Scholar 

  • Van Elsas, J. D., Trevors, J. T., & Wellington, E. M. H. (1997). Modern soil microbiology. New York: Marcel Dekker.

    Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Webster, J. J., Hampton, G. J., & Leach, F. R. (1984). ATP in soil. A new extractant and extraction procedure. Soil Biology & Biochemistry, 16, 335–342.

    Article  CAS  Google Scholar 

  • Yeomans, J. C., & Bremner, J. M. (1989). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19, 1467–1476.

    Article  Google Scholar 

  • Yergeau, E., Bokhorst, S., Huiskers, A. H. L., Boschker, H. T. S., Aerts, R., & Kowalchuck, G. A. (2007). Size and structure of bacterial, fungal and nematode communities along an Antartic environmental gradient. FEMS Microbiology Ecology, 59, 436–451.

    Article  CAS  Google Scholar 

  • Zhou, J., Xia, B., Huang, H., Palumbo, A., & Tiedje, J. (2004). Microbial diversity and heterogeneity in sandy subsurface soils. Applied & Environmental Microbiology, 70, 1723–1734.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Ros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ros, M., Pascual, J.A., Moreno, J.L. et al. Evaluation of Microbial Community Activity, Abundance and Structure in a Semiarid Soil Under Cadmium Pollution at Laboratory Level. Water Air Soil Pollut 203, 229–242 (2009). https://doi.org/10.1007/s11270-009-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0006-z

Keywords

Navigation