Skip to main content
Log in

A Mass Balance Mercury Budget for a Mine-Dominated Lake: Clear Lake, California

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A flask = 75–76.5 lbs, depending on the mining era.

  2. The DDD horizon is defined as the vertical position within the sediment core where DDD appeared suddenly and quickly reached a concentration peak, corresponding to the massive application of this pesticide to the lake in 1954. See Richerson et al. (in press) and Osleger et al. (in press) for details of all dating techniques.

References

  • Bairrington, P. K. (2000). Clear lake fishery management plan. Yountville, CA, California Department of Fish and Game, Wildlife and Inland Fisheries Division, Fisheries Program Branch, January 2000.

  • Bale, A. E. (1995). Modeling mercury transport and transformation in the aquatic environment. Ph.D. dissertation, University of California, Davis, 1995, 224 pp.

  • Bale, A. E. (2000). Modeling aquatic mercury fate in Clear Lake, California. Journal of Environmental Engineering, 126, 153–163. doi:10.1061/(ASCE)0733-9372(2000)126:2(153).

    Article  CAS  Google Scholar 

  • Blais, J. M., & Kalff, J. (1995). The influence of lake morphometry on sediment focusing. Limnology and Oceanography, 40, 582–588.

    CAS  Google Scholar 

  • Bloom, N. S., & Crecelius, E. A. (1983). Determination of mercury in seawater at subnanogram per liter levels. Marine Chemistry, 14, 49–60. doi:10.1016/0304-4203(83)90069-5.

    Article  CAS  Google Scholar 

  • Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479, 233–248. doi:10.1016/S0003-2670(02)01550-7.

    Article  CAS  Google Scholar 

  • Cannata, S. (2000). (Personal Communication to Janis Cooke) Department of Fish and Game, Lakeport Field Office, Central Valley Regional Water Quality Control Board, regarding species and volumes of fish caught and fishing practices of anglers at Clear Lake.

  • Chamberlin, C. E., Chaney, R., Finney, B., Hood, M., Lehman, P., & McKee, M. (1990). Abatement and control study: Sulphur Bank Mine and Clear Lake. Prepared for California Regional Water Quality Control Board. Arcata, CA: Environmental Resources Engineering Department, Humboldt State University 240 pp.

    Google Scholar 

  • Churchill, R. K. (2000). Contributions of mercury to California’s environment from mercury and gold mining activities—insights from the historical record. In Proceedings: Assessing and managing mercury from historic and current mining activities (pp. 33–6). A symposium sponsored by the USEPA Office of Research and Development, November 28–30, 2000, San Francisco.

  • Clarkson, T. W. (2002). The three modern faces of mercury. Environmental Health Perspectives, 110(Suppl 1), 11–23.

    CAS  Google Scholar 

  • CVRWQCB (Central Valley Regional Water Quality Control Board) (1985). Summary of mercury data collection at Clear Lake. Sacramento, CA, Staff Report, Central Valley Regional Water Quality Control Board.

  • CVRWQCB (Central Valley Regional Water Quality Control Board) (1987). Regional mercury assessment. Policies, Standards, and Special Studies Unit of the CVRWQCB. March 1987.

  • CVRWQCB (Central Valley Regional Water Quality Control Board) (2002). Clear Lake TMDL for Mercury. Staff Report, Final Report. February 2002. California Environmental Protection Agency, Regional Water Quality Control Board, Central Valley Region. 69 pp, plus appendices.

  • Domagalski, J. L., Alpers, C. N., Slotton, D. G., Suchanek, T. H., & Ayers, S. M. (2004). Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California. Science of the Total Environment, 327, 215–237. doi:10.1016/j.scitotenv.2004.01.013.

    Article  CAS  Google Scholar 

  • Donnelly-Nolan, J. M., Burns, M. G., Goff, F. E., Peters, E. K., & Thompson, J. M. (1993). The Geysers–Clear Lake area, California: Thermal waters, mineralization, volcanism, and geothermal potential. Economic Geology, 88, 301–316.

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F., Mason, R. P., & Vandal, G. M. (1991). Atmospheric cycling and air–water exchange of mercury over mid-continental lacustrine regions. Water Air and Soil Pollution, 56, 745–767. doi:10.1007/BF00342314.

    Article  CAS  Google Scholar 

  • Foe, C., & Croyle, B. (1998). Mercury concentrations and loads from the Sacramento River and from Cache Creek to the Sacramento–San Joaquin Delta Estuary. Sacramento, CA, Staff report to the Central Valley Regional Water Quality Control Board.

  • Gill, G. A., & Bruland, K. W. (1990). Mercury speciation in surface freshwater systems in California and other areas. Environmental Science and Technology, 24, 1302–1400. doi:10.1021/es00079a014.

    Article  Google Scholar 

  • Goff, F., & Janik, C. J. (1993). Gas geochemistry and guide for geothermal features in the Clear Lake Region, California. In J. J. Rytuba (Ed.), Active geothermal systems and gold-mercury deposits in the Sonoma–Clear Lake Volcanics Fields, California (pp. 207–261). Guidebook Series Volume 16. Prepared for Society of Economic Geologists Field Conference (27 September–1 October 1993). Society of Economic Geologists.

  • Gustin, M. S. (2003). Are mercury emissions from geologic sources significant? A status report. Science of the Total Environment, 304, 153–167. doi:10.1016/S0048-9697(02)00565-X.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Coolbaugh, M. F., Engle, M. A., Fitzgerald, B. C., Keislar, R. E., Lindberg, S. E., et al. (2003). Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environmental Geology, 43, 339–351.

    CAS  Google Scholar 

  • Gustin, M. S., Fitzgerald, B., Nacht, D., Zehner, B., Coolbaugh, M., Engle, M., et al. (2000). Atmospheric mercury emissions from mine waste. In Proceedings, Assessment and Managing Mercury from Historic and Current Mining Activities. Extended Abstract. San Francisco, CA: USEPA, Office of Research and Development.

  • Hickey, R., Smith, A., & Jankowski, P. (1994). Slope length calculations from a DEM within ARC/INFO Grid. Computers, Environment and Urban Systems, 18(N5), 365–380. doi:10.1016/0198-9715(94)90017-5.

    Article  Google Scholar 

  • Hilton, J. (1985). A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnology and Oceanography, 30, 1131–1143.

    Article  Google Scholar 

  • Hylander, L. D., & Meili, M. (2003). 500years of mercury production: Global annual inventory by region until 2000 and associated emissions. Science of the Total Environment, 304, 13–27. doi:10.1016/S0048-9697(02)00553-3.

    Article  CAS  Google Scholar 

  • Iverfeldt, A., & Persson, I. (1985). The solvation thermodynamics of methylmercury (II) species derived from measurements of the heat of solution and the Henry’s law constant. Inorganica Chimica Acta, 103, 113–119. doi:10.1016/S0020-1693(00)87476-9.

    Article  CAS  Google Scholar 

  • Jewett, D. G., Reller, G. J., Manges, E., & Bates, E. R. (2000). Bounds on subsurface mercury flux from the Sulphur Bank Mercury Mine, Lake County, California. In Proceedings: Assessing and Managing Mercury from Historic and Current Mining Activities (pp. 225–228). A Symposium sponsored by the USEPA Office of Research and Development, November 28–30, 2000, San Francisco.

  • LCFCWCD (Lake County Flood Control & Water Conservation District) (1987). Lake County 1987 Resource Management Plan Update. Report to Lake County Flood Control & Water Conservation District.

  • Likens, G. E., & Davis, M. B. (1975). Post-glacial history of Mirror Lake and its watershed in New Hampshire U.S.A.: An initial report. Verhandlungen Internationale Vereinigung fuer Theoretische und Angewandte Limnologie, 19, 982–993.

    Google Scholar 

  • Lindberg, S., & Vermette, S. J. (1995). Workshop on sampling mercury in precipitation for the National Atmospheric Deposition Program. Atmospheric Environment, 29, 1219–1220.

    Article  CAS  Google Scholar 

  • Lodenius, M. (1998). Dry and wet deposition of mercury near a chlor-alkali plant. Science of the Total Environment, 213, 53–56. doi:10.1016/S0048-9697(98)00073-4.

    Article  CAS  Google Scholar 

  • Loux, N. T. (2000). Diel temperature effects on the exchange of elemental mercury between the atmosphere and underlying waters. Environmental Toxicology and Chemistry, 19, 1191–1198. doi:10.1897/1551-5028(2000)019<1191:DTEOTE>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Macedo, R. A. (1991). Creel survey at Clear Lake, California. March–June, 1988. Department of Fish and Game, Region 3. Inland Fisheries Administrative Report No. 91-3, 1991.

  • Maramba, N. P. C., Reyes, J. P., Francisco-Rivera, A. T., Panganiban, L. C. R., Dioquino, C., Dando, N., et al. (2006). Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: A toxic legacy. Journal of Environmental Management, 81, 135–145. doi:10.1016/j.jenvman.2006.02.013.

    Article  CAS  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., Hurley, J., Hanson Jr., A. K., Donaghay, P. L., & Sieburth, J. M. (1993). Mercury biogeochemical cycling in a stratified estuary. Limnology and Oceanography, 38, 1227–1241.

    Article  CAS  Google Scholar 

  • Meyer, L. D., & Wischmeier, W. H. (1969). Mathematical simulation of the process of soil erosion by water. ASEA Journal, 12, 754–758, 762.

    Google Scholar 

  • Nacht, D. M., Gustin, M. S., Engle, M. A., Zehner, R. E., & Giglini, A. D. (2004). Atmospheric mercury emissions and speciation at the Sulphur Bank Mercury Mine Superfund Site, Northern California. Environmental Science and Technology, 38, 1977–1983. doi:10.1021/es0304244.

    Article  CAS  Google Scholar 

  • NADP (National Atmospheric Deposition Network) (2000). Data for Covelo, California, from website http://nadp.sws.uiuc.edu/mdn/.

  • Osleger, D. A., Zierenberg, R. A., Suchanek, T. H., Stoner, J. S., Morgan, S., & Adam, D. (in press) Clear Lake sediments: Anthropogenic changes in physical sedimentology and magnetic response. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Philip, G. M., & Watson, D. F. (1982). A precise method for determining contoured surfaces. Australian Petroleum Exploration Association Journal, 22, 205–212.

    Google Scholar 

  • Reible, D. D., Valsaraj, K. T., & Thibodeaux, L. J. (1991). In O. Huntzinger (Ed.), The Handbook of environmental chemistry, reactions and processes, vol. 2(F) pp. 185–228. New York: Springer.

    Google Scholar 

  • Richerson, P. J., Suchanek, T. H., Becker, J. C., Heyvaert, A. C., Slotton, D. G., Kim, J. G., et al. (2000). The history of human impacts in the Clear Lake watershed (California) as deduced from lake sediment cores. In K. M. Scow, G. E. Fogg, D. E. Hinton, & M. L. Johnson (Eds.), Integrated assessment of ecosystem health (pp. 119–145). Washington, D.C.: Lewis 358pp.

    Google Scholar 

  • Richerson, P. J., Suchanek, T. H., & Why, S. J. (1994). The causes and control of algal blooms in Clear Lake. Clean Lakes Diagnostic/Feasibility Study for Clear Lake, California. Final Report to Lake County Flood Control and Water Conservation District, CA State Water Resources Control Board and USEPA. 200pp.

  • Richerson, P. J., Suchanek, T. H., Zierenberg, R. A., Osleger, D. A., Heyvaert, A. C., Slotton, D. G., et al. (in press). Anthropogenic stressors and changes in the Clear lake aquatic ecosystem as recorded in sediment cores. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Sakata, M., & Marumoto, K. (2005). Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment, 39, 3139–3146. doi:10.1016/j.atmosenv.2005.01.049.

    Article  CAS  Google Scholar 

  • Schladow, S. G., & Clark, J. (in press). Use of tracers to quantify subsurface flow through a mining pit. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • SFEI (San Francisco Estuary Institute) (2001). San Francisco Bay atmospheric deposition pilot study part 1: Mercury. Prepared by the San Francisco Estuary Institute for the San Francisco Estuary Regional Monitoring Program, Oakland, CA. August 2001.

  • Shannon, J. D., & Voldner, E. C. (1995). Modeling atmospheric concentrations of mercury and deposition to the Great Lakes. Atmospheric Environment, 29, 1649–1661. doi:10.1016/1352-2310(95)00075-A.

    Article  CAS  Google Scholar 

  • Shipp, W. G., & Zierenberg, R. A. (in press). Determination of acid mine drainage using lake sediment porefluid geochemistry: Clear Lake, California. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Simoons, F. J. (1952). The settlement of the Clear Lake Upland of California. Masters of Arts thesis, University of California. 221pp.

  • Sims J. D. & White D. E. (1981). Mercury in the sediments of Clear Lake. In R. J. McLaughlin, J. M. Donnelly (Eds.), Research in the Geysers–Clear Lake Geothermal Area of Northern California (pp. 237–241). California: US Government Printing Office USGS Professional Paper 1141.

    Google Scholar 

  • Steding, D. J., & Flegal, A. R. (2002). Mercury concentrations in coastal California precipitation: Evidence of local and trans-Pacific fluxes of mercury to North America. Journal of Geophysical Research, 107, ACH 11–1 to ACH 11-7.

    Article  CAS  Google Scholar 

  • Stratton, J. W., Smith, D. F., Fan, A. M., & Book, S. A. (1987). Methylmercury in northern coastal mountain lakes: Guidelines for sport fish consumption for Clear Lake (Lake County), Lake Berryessa (Napa County) and Lake Herman (Solano County) pp. 1–15. Berkeley: Hazard Evaluation Section and the Epidemiological Studies and Surveillance Section, Office of Environmental Health Hazard Assessment, California Department of Health Services.

    Google Scholar 

  • Suchanek, T. H., Eagles-Smith, C. A., & Harner, E. J. (in press-a). Clear Lake methyl mercury distribution is decoupled from bulk mercury loading: Implications for TMDL implementation. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Suchanek, T. H., Eagles-Smith, C. A., Harner, E. J., Slotton, D. G., Colwell, A. E., Anderson, N. L., et al. (in press-b). Are fish affected by mercury in a mine-dominated ecosystem at Clear Lake, California? Species and population level trends. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Suchanek, T. H., Eagles-Smith, C. A., Slotton, D. G., Harner, E. J., & Adam, D. P. (in press-c). Mercury in the abiotic matrices of Clear Lake, California: Human health and ecotoxicological implications. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Suchanek, T. H., Eagles-Smith, C. A., Slotton, D. G., Harner, E. J. & Adam, D. P., Colwell, A. E., et al. (in press-d). Mine-derived mercury: Effects on lower trophic species in Clear Lake, California. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Suchanek, T. H., Mullen, L. H., Lamphere, B. A., Richerson, P. J., Woodmansee, C. E., Slotton, D. G., et al. (1998). Redistribution of mercury from contaminated lake sediments of Clear Lake, California. Water Air and Soil Pollution, 104, 77–102. doi:10.1023/A:1004980026183.

    Article  CAS  Google Scholar 

  • Suchanek, T. H., Nelson, D. C., Zierenberg, R., Bern, A. L., Shipp, W., King, P., et al. (2000b). Influence of acid mine drainage from the abandoned Sulphur Bank Mercury Mine on methyl mercury production in Clear Lake (CA). In Proceedings: Assessing and Managing Mercury from Historic and Current Mining Activities (pp. 218–224). A symposium sponsored by the USEPA Office of Research and Development, November 28–30, 2000, San Francisco.

  • Suchanek, T. H., Richerson, P. J., Flanders, J. R., Nelson, D. C., Mullen, L. H., Brister, L. L., et al. (2000a). Monitoring inter-annual variability reveals sources of mercury contamination in Clear Lake, California. Environmental Monitoring and Assessment, 64, 299–310. doi:10.1023/A:1006414332331.

    Article  CAS  Google Scholar 

  • Suchanek, T. H., Richerson, P. J., Mullen, L. J., Brister, L. L., Becker, J. C., Maxson, A., et al. (1997). The role of the Sulphur Bank Mercury Mine site (and associated hydrogeological processes) in the dynamics of mercury transport and bioaccumulation within the Clear Lake aquatic ecosystem. A report prepared for the USEPA, Region IX Superfund Program. 245pp, plus 9 Appendices and 2 Attachments.

  • Suchanek, T. H., Richerson, P. J., Nelson, D. C., Eagles-Smith, C. A., Anderson, D. W., Cech Jr, J. J., et al. (2003). Evaluating and managing a multiply stressed ecosystem at Clear Lake, California: A holistic ecosystem approach. In D. J. Rapport, W. L. Lasley, D. E. Rolston, N. O. Nielsen, C. O. Qualset, & A. B. Damania (Eds.), Managing for healthy ecosystems (pp. 1239–1271). Boca Raton, Florida USA: Lewis.

    Google Scholar 

  • Suchanek, T. H., Richerson, P. J., Zierenberg, R. A., Eagles-Smith, C. A., Slotton, D. G., Harner, E. J., et al. (in press-e). The legacy of mercury cycling from mining sources in an aquatic ecosystem: From ore to organism. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Suchanek, T. H., Richerson, P. J., Zierenberg, R. A., Slotton, D. G., & Mullen, L. H. (in press-f). Vertical stability of mercury in historic and pre-historic sediments from Clear Lake, California. Special Issue - Mercury cycling and bioaccumulation in a mine-dominated lake: Clear Lake, California. Ecological Applications.

  • Tchobanoglous, G., & Schroeder, E. D. (1985). Water quality: Characteristics, modeling, modification. Reading, Massachusetts: Addison-Wesley 768 pp.

    Google Scholar 

  • Teale Data Center (1997). Digital Elevation Model (30 meters) http://gis.ca.gov/meta.epl?oid=277; metadata at http://gis.ca.gov/casil/gis.ca.gov/dem/.

  • USDA-NRCS (U.S. Department of Agriculture, Natural Resources Conservation Service) (1998). Solid Survey Geographic (SSURGO) database for Lake County, California.

  • USDA-NRCS (U.S. Department of Agriculture, Natural Resources Conservation Service) (1999). Lake County 2 year/6 hour rainfall map and R value table, unpublished map and table. Provided by Len Kashuba.

  • USEPA (United States Environmental Protection Agency) (1997). Mercury Study Report to Congress. EPA-452-97-003-010, Office of Air and Radiation, Washington, D.C. 1980 pp.

  • USGS (United States Geological Survey) (1992). National Land Cover Dataset.

  • Vanoni, V. A. (1975). Sediment engineering. Prepared by the ASCE Task Committee. New York, NY.

  • Varekamp, J. C., & Waibel, A. F. (1987). Natural cause for mercury pollution at Clear Lake, California, and paleotectonic inferences. Geology, 15, 1018–1021. doi:10.1130/0091-7613(1987)15<1018:NCFMPA>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Vette, A. F., Landis, M. S., & Keeler, G. J. (2002). Deposition and emission of gaseous mercury to and from Lake Michigan during the Lake Michigan Mass Balance Study (July, 1994–October 1995). Environmental Science and Technology, 36, 4525–4532.

    Article  CAS  Google Scholar 

  • Watras, C. J., Bloom, N. S., Crecelius, E. A., Cutter, G. A., & Gill, G. A. (1992). Quantification of mercury, selenium and arsenic in aquatic environments. In W. Chow (Ed.), Proceedings: 1990 International Conference on Measuring Waterborne Trace Substances. Palo Alto, CA: EPRI.

    Google Scholar 

  • Watson, D. F., & Philip, G. M. (1985). A refinement of inverse distance weighted interpolation. Geo-Processing, 2, 315–327.

    Google Scholar 

  • Welker, M., & Vermette, S. J. (1996). Mercury Deposition Network: QA/QC Protocols. Paper 96-RP129.01, Proceedings of the 89th Annual Meeting of the Air and Waste Management Association, Pittsburgh, PA.

  • White, D. E., & Roberson, C. E. (1962). Sulphur Bank, California, a major hot-spring quicksilver deposit. In A. E. J. Engel, H. L. James, & B. F. Leonard (Eds.), Petrologic studies, a volume to honor A.F. Buddington (pp. 397–428). Boulder, CO: Geological Society of America.

    Google Scholar 

  • Wiener, J. G., & Suchanek, T. H. (2008). Mercury contamination of aquatic ecosystems: The basis for ecotoxicological concern, with reference to mining sources. Ecological Applications, Special Issue, in press.

  • Wischmeier, W. H., & Smith, D. D. (1960). A universal soil-loss equation to guide conservation farm planning. Transactions in International Congress on Soil Science, I, 418–425 7th.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses a guide to conservation planning. Washington D.C.: U.S. Department of Agriculture.

    Google Scholar 

Download references

Acknowledgments

Deep appreciation is extended to the many staff from the U.C. Davis Clear Lake Environmental Research Center (CLERC) at Clear Lake who contributed greatly to the collection and processing of data and samples, analyses and discussions over the entire 15year period of this study. Dr. Andy Bale helped with the section on Hg efflux from the lake surface. This work was supported by the USEPA-funded (R819658 & R825433) Center for Ecological Health Research at UC Davis, USEPA Region 9 Superfund Program (68-S2-9005) and UC Davis faculty research grants to THS. We also thank Dr. Mark Marvin DiPasquale, Karen Phillips, Julie Yee and three anonymous reviewers for constructive comments on earlier drafts. Although the information in this document has been funded wholly or in part by the United States Environmental Protection Agency, it may not necessarily reflect the views of the Agency and no official endorsement should be inferred. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Suchanek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchanek, T.H., Cooke, J., Keller, K. et al. A Mass Balance Mercury Budget for a Mine-Dominated Lake: Clear Lake, California. Water Air Soil Pollut 196, 51–73 (2009). https://doi.org/10.1007/s11270-008-9757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9757-1

Keywords

Navigation