Skip to main content
Log in

Mercury and Arsenic Bioaccumulation and Eutrophication in Baiyangdian Lake, China

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Hg and As are widespread contaminants globally and particularly in Asia. We conducted a field study in Baiyangdian Lake, the largest lake in the North China Plain, to investigate bioaccumulation and trophic transfer of potentially toxic metals (total mercury and arsenic) in sites differing in proximity from the major point sources of nutrients and metals. Hg concentrations in fish and As concentrations in water are above critical threshold levels (US Environmental Protection Agency based) considered to pose some risk to humans and wildlife. Hg concentrations in biota are within the range of concentrations in lakes in the Northeast US despite the high levels of Hg emission and deposition in China whereas As concentrations are much higher. Dissolved concentrations of both Hg and As decrease with increasing chlorophyll concentrations suggesting that there is significant uptake of metal from water by algae. These results provide evidence for algal blooms controlling dissolved metal concentrations and potentially mitigating the trophic transfer of Hg to fish. This study also underscores the need for further investigation into this contaminated ecosystem and others like it in China that are an important source of fish and drinking water for consumption by local human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aurillo, A. C., et al. (1994). Speciation and fate of arsenic in 3 lakes of the Aberjona watershed. Environmental Science & Technology, 28(4), 577–585.

    Article  Google Scholar 

  • Aurilio, A. C., et al. (1995). Sources and distribution of arsenic in the Aberjona watershed, eastern Massachusetts. Water Air and Soil Pollution, 81(3–4), 265–282.

    Article  CAS  Google Scholar 

  • Bodaly, R. A., et al. (1984). Increases in fish mercury levels in lakes flooded by the Churchill River Diversion, Northern Manitoba. Canadian Journal of Fisheries and Aquatic Sciences, 41(4), 682–691.

    CAS  Google Scholar 

  • Burgess, N. M., & Hobson, K. A. (2006). Bioaccumulation of mercury in yellow perch (Perca flavescens) and common loons (Gavia immer) in relation to lake chemistry in Atlantic Canada. Hydrobiologia, 567, 275–282.

    Article  CAS  Google Scholar 

  • Cabana, G., et al. (1994). Pelagic food-chain structure in Ontario lakes – a determinant of mercury levels in lake trout (Salvelinus namaycush). Canadian Journal of Fisheries and Aquatic Sciences, 51(2), 381–389.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., et al. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Article  Google Scholar 

  • Chen, C. Y., & Folt, C. L. (2000). Bioaccumulation and diminution of arsenic and lead in a freshwater food web. Environmental Science & Technology, 34(18), 3878–3884.

    Article  CAS  Google Scholar 

  • Chen, C. Y., & Folt, C. L. (2005). High plankton densities reduce mercury biomagnification. Environmental Science & Technology, 39(1), 115–121.

    Article  CAS  Google Scholar 

  • Chen, C. Y., et al. (2000). Accumulation of heavy metals in food web components across a gradient of lakes. Limnology and Oceanography, 45(7), 1525–1536.

    CAS  Google Scholar 

  • Cheng, S. P. (2003). Heavy metal pollution in China: Origin, pattern and control. Environmental Science and Pollution Research, 10(3), 192–198.

    CAS  Google Scholar 

  • Dou, W., & Zhao, Z. (1998). Contamination of DDT and BHC in water, sediments, and fish (Carassius auratus) muscle from Baiyangdian Lake. Acta Scientiae Circumstantiae, 18, 208–312.

    Google Scholar 

  • Driscoll, C. T., et al. (1994). The mercury cycle and fish in the Adirondack lakes. Environmental Science & Technology, 28(3), A136–A143.

    Article  Google Scholar 

  • Essington, T. E., & Houser, J. N. (2003). The effect of whole-lake nutrient enrichment on mercury concentration in age-1 yellow perch. Transactions of the American Fisheries Society, 132(1), 57–68.

    Article  CAS  Google Scholar 

  • Finkelman, R. B., et al. (1999). Health impacts of domestic coal use in China. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3427–3431.

    Article  CAS  Google Scholar 

  • France, R. L. (1995). C-13 Enrichment in benthic compared to planktonic algae: Foodweb implications. Marine Ecology-Progress Series, 124(1–3), 307–312.

    Article  Google Scholar 

  • Gorski, P. R., et al. (2003). Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA. The Science of The Total Environment, 304(1–3), 327–348.

    Article  CAS  Google Scholar 

  • Jackson, T. A. (1991). Biological and environmental-control of mercury accumulation by fish in lakes and reservoirs of northern Manitoba, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 48(12), 2449–2470.

    CAS  Google Scholar 

  • Jiang, G. B., et al. (2006). Mercury pollution in China: An overview of the past and current sources of the toxic metal. Environmental Science and Technology, 40(12), 3672–3678.

    CAS  Google Scholar 

  • Jin, L. J., et al. (1999). Predictive model for mercury accumulation in carp (Cyprinus carpio) of reservoirs in China. Water Air and Soil Pollution, 115(1–4), 363–370.

    Article  CAS  Google Scholar 

  • Kamman, N. C., & Engstrom, D. R. (2002). Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from Pb-210 dated sediment cores. Atmospheric Environment, 36(10), 1599–1609.

    Article  CAS  Google Scholar 

  • Kamman, N. C., et al. (2004). Assessment of mercury in waters, sediments, and biota of New Hampshire and Vermont lakes, USA, sampled using a geographically randomized design. Environmental Toxicology and Chemistry, 23(5), 1172–1186.

    Article  CAS  Google Scholar 

  • Karimi, R. et al. (2007). Stoichiometric controls of mercury dilution by growth. Proceedings of the National Academy of Sciences of the United States of America, 104, 7477–7482.

    Article  CAS  Google Scholar 

  • Kidd, K. A., et al. (1999). Effects of northern pike (Esox lucius) additions on pollutant accumulation and food web structure, as determined by delta C- 13 and delta N-15, in a eutrophic and an oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 56(11), 2193–2202.

    Article  Google Scholar 

  • Klaue, B., & Blum, J. D. (1999). Trace analyses of arsenic in drinking water by inductively coupled plasma mass spectrometry: high resolution versus hydride generation. Analytical Chemistry, 71(7), 1408–1414.

    Article  CAS  Google Scholar 

  • Kuroiwa, T., et al. (1994). Biomethylation and biotransformation of arsenic in a fresh-water food-chain – Green-alga (Chlorella-Vulgaris)-shrimp (Neocaridina-Denticulata)-killifish (Oryzias-Latipes). Applied Organometallic Chemistry, 8(4), 325–333.

    Article  CAS  Google Scholar 

  • Lange, T. R., et al. (1994). Mercury accumulation in largemouth bass (Micropterus salmoides) in a Florida lake. Archives of Environmental Contamination and Toxicology, 27(4), 466–471.

    Article  CAS  Google Scholar 

  • Lathrop, R. C., et al. (1991). Mercury concentrations in walleyes from Wisconsin (USA) lakes. Water Air and Soil Pollution, 56, 295–307.

    Article  CAS  Google Scholar 

  • Li, Z. B., et al. (2006). Exposure of the urban population to mercury in Changchun city, Northeast China. Environmental Geochemistry and Health, 28(1–2), 61–66.

    Article  CAS  Google Scholar 

  • Liu, J. G., & Diamond, J. (2005). China’s environment in a globalizing world. Nature, 435(7046), 1179–1186.

    Article  CAS  Google Scholar 

  • Liu, R. H., et al. (2003). Distribution and speciation of mercury in the peat bog of Xiaoxing’an Mountain, northeastern China. Environmental Pollution, 124(1), 39–46.

    Article  CAS  Google Scholar 

  • Luoma, S. N., et al. (1998). Metal uptake by phytoplankton during a bloom in South San Francisco Bay: implications for metal cycling in estuaries. Limnology and Oceanography, 43(5), 1007–1016.

    Article  CAS  Google Scholar 

  • Maeda, S. (1994). Biotransformation of arsenic in the freshwater environment. In J. O. Nriagu (Ed.) Arsenic in the environment, part I: cycling and characterization (pp. 155–187). New York: Wiley.

    Google Scholar 

  • Maeda, S., et al. (1992). Bioaccumulation of arsenic and its fate in a freshwater food chain. Applied Organometallic Chemistry, 6(2), 213–219.

    Article  CAS  Google Scholar 

  • Marker, A. F. H., et al. (1980). Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Archiv fuer Hydrobiologie Beihefte Ergeb-nisse der Limnologie, 14, 52–69.

    CAS  Google Scholar 

  • McQueen, D. J., et al. (1992). Trophic level relationships in pelagic food webs: Comparisons derived from long-term data sets for Oneida Lake, New-York (USA), and Lake St. George, Ontario (Canada). Canadian Journal of Fisheries and Aquatic Sciences, 49(8), 1588–1596.

    Article  Google Scholar 

  • Munthe, J., et al. (2007). Recovery of mercury-contaminated fisheries. Ambio, 36(1), 33–44.

    Article  CAS  Google Scholar 

  • Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment. Environmental Toxicology & Chemistry, 16(5), 917–927.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1996). A history of global metal pollution. Science, 272(5259), 223–224.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., et al. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40(22), 4048–4063.

    Article  CAS  Google Scholar 

  • Patterson, C. C., & Settle, D. M. (1976). Accuracy in trace analysis: Sampling, sample handling, and analysis, 321–351 pp. NBS Special Publication.

  • Peterson, S. A., et al. (2007). Mercury concentration in fish from streams and rivers throughout the Western United States. Environmental Science and Technology, 41(1), 58–65.

    Article  CAS  Google Scholar 

  • Pi, J. B., et al. (2002). Evidence for induction of oxidative stress caused by chronic exposure of chinese residents to arsenic contained in drinking water. Environmental Health Perspectives, 110(4), 331–336.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., et al. (2002). Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4419–4423.

    Article  CAS  Google Scholar 

  • Power, M., et al. (2002). Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39(5), 819–830.

    Article  CAS  Google Scholar 

  • Shaw, J. R., et al. (2007). Acute toxicity of arsenic to Daphnia pulex: Influence of organic functional groups and 20 oxidation state. Environmental Toxicology, 26(7), 1532–1537.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Smith, V. H., et al. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1–3), 179–196.

    Article  CAS  Google Scholar 

  • Stemberger, R. S., & Chen, C. Y. (1998). Fish tissue metals and zooplankton assemblages of northeastern US lakes. Canadian Journal of Fisheries and Aquatic Sciences, 55(2), 339–352.

    Article  CAS  Google Scholar 

  • Stemberger, R. S., & Lazorchak, J. M. (1994). Zooplankton assemblage responses to disturbance gradients. Canadian Journal of Fisheries and Aquatic Sciences, 51(11), 2435–2447.

    Google Scholar 

  • Suhendrayatna, O. A., et al. (2002). Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes. Chemosphere, 46(2), 319–324.

    Article  CAS  Google Scholar 

  • USEPA (1984). Ambient water quality criteria for arsenic, edited.

  • USEPA (2000). Guidance for assessing chemical contaminant data for use in fish advisories, edited.

  • USEPA (2001). Water quality criterion for the protection of human health: Methylmercury, edited.

  • Wang, H. Y., & Stuanes, A. O. (2003). Heavy metal pollution in air–water–soil–plant system of Zhuzhou City, Hunan Province. China. Water Air and Soil Pollution, 147(1–4), 79–107.

    CAS  Google Scholar 

  • Wang, Q. R., et al. (2003). Soil contamination and plant uptake of heavy metals at polluted sites in China. Journal of Environmental Science and Health Part A – Toxic/Hazardous Substances & Environmental Engineering, 38(5), 823–838.

    Google Scholar 

  • Wang, Z. W., et al. (2006). Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atmospheric Environment, 40(12), 2194–2201.

    Article  CAS  Google Scholar 

  • Watras, C. J., et al. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of the Total Environment, 219(2–3), 183–208.

    Article  CAS  Google Scholar 

  • Wickre, J. B., et al. (2004). Environmental exposure and fingernail analysis of arsenic and mercury in children and adults in a Nicaraguan gold mining community. Archives of Environmental Health, 59(8), 400–409.

    Article  CAS  Google Scholar 

  • Wu, Y., et al. (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology, 40(17), 5312–5318.

    Article  CAS  Google Scholar 

  • Xia, Y. J., & Liu, J. (2004). An overview on chronic arsenism via drinking water in FIR China. Toxicology, 198(1–3), 25–29.

    Article  CAS  Google Scholar 

  • Xu, M. Q., et al. (1995). Zooplankton community structure and water quality of Baiyangdian Lake. In S. Zhang, et al. (Ed.) Study on Water Pollution Control for Baiyangdian Lake Area (I). Beijing: Science Press.

    Google Scholar 

  • Xu, M. Q., et al. (1998). The ecological degradation and restoration of Baiyangdian Lake, China. Journal of Freshwater Ecology, 13(4), 433–446.

    Google Scholar 

  • Yoshida, T., et al. (2004). Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicology and Applied Pharmacology, 198(3), 243–252.

    Article  CAS  Google Scholar 

  • Zhang, H., et al. (1999). An approach to studying heavy metal pollution caused by modern city development in Nanjing, China. Environmental Geology, 38(3), 223–228.

    Article  CAS  Google Scholar 

  • Zhang, H., et al. (2002). Arsenic pollution in groundwater from Hetao Area, China. Environmental Geology, 41(6), 638–643.

    Article  CAS  Google Scholar 

  • Zhong, Y. G., & Power, G. (1997). Fisheries in China: Progress, problems, and prospects. Canadian journal of fisheries and aquatic sciences, 54(1), 224–238.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Shenggui Chen and Meixun Zhao for their assistance in making logistical arrangements and participating in field sampling. We thank Brandon Mayes for his help in processing samples for metal analysis, and Stefan Sturup for the metal analyses of plankton and fish samples. We also thank Karen Baumgartner for taxonomic identification and quantification of phytoplankton samples and Mike Poage for the analysis of carbon stable isotope in biotic samples. This research was supported by the National Science Foundation International Programs Office, the NIH Grant Number P42 ESO7373 (to C.L.F. and C.Y.C.) from the National Institute of Environmental Health Sciences, and logistical support from the Chinese Academy of Sciences Institute of Zoology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.Y., Pickhardt, P.C., Xu, M.Q. et al. Mercury and Arsenic Bioaccumulation and Eutrophication in Baiyangdian Lake, China. Water Air Soil Pollut 190, 115–127 (2008). https://doi.org/10.1007/s11270-007-9585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9585-8

Keywords

Navigation