Skip to main content
Log in

Detection of Water and Sediments Pollution of An Arid Saltern (Sfax, Tunisia) by Coupling the Distribution of Microorganisms With Hydrocarbons

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We investigated the coupling of abundance of bacteria, phytoplankton and ciliates with hydrocarbons in the surface water and sediments of five interconnected ponds in the arid Sfax solar salterns. This study aimed at determining the potential sources of hydrocarbons and the effects of salinity gradients on microorganism metabolism. Hydrocarbon analysis was performed by gas chromatography (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The GC-FID allowed the detection of aliphatic hydrocarbons and n-alkanes ranging from n-C13 to n-C30. Total aliphatic hydrocarbon concentrations varied from 92.5 mg. l−1 in the first pond (having marine characteristics) to 661.1 mg. l−1 in the last pond (crystallizer) (316.8 ± 120.1 mg. l−1) for water samples and from 26.7 to 127.8 μg. g−1 dry weight for sediment samples. The GC-MS enabled us to detect halogenated hydrocarbons (bromoalkanes and chloroalkanes) and n-alkenes. The distribution of n-alkanes indices coupled to several environmental factors suggests that a major fraction of hydrocarbons resulted from both prokaryotic (bacteria) and eukaryotic (protists) developments. A low hydrocarbon fraction might be petrogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Fattah, H. M., Moubasher, A. H., & Abdel-Hafez, S. I. (1977). Studies on mycoflora of salt marshes in Egypt. I. Sugar fungi. Mycopathologia, 16, 19–26.

    Article  Google Scholar 

  • Ackman, R. G. (1971). Pristane and other hydrocarbons in some freshwater and marine fish oil. Lipids, 6, 520–522.

    Article  CAS  Google Scholar 

  • Agawin, N. S. R., Duarte, C. M., Agusti, S., & Vaqué, D. (2004). Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquatic Microbial Ecology, 34, 57–67.

    Article  Google Scholar 

  • Albaigés, J., Grimalt, J., Bayona, J. M., Risebrough, R., De Lappe, B., & Walker, I. I. (1984). Dissolved particulate and sedimentary hydrocarbons in a deltaic environment. Organic Geochemistry, 6, 237–248.

    Article  Google Scholar 

  • Amdouni, R. (1990). Etude géochimique des saumures libres, des sédiments et des sels dans la saline de Sfax (Tunisie). Thèse Université Paris VII, 240pp + Annexes.

  • Antón, J., Llobet-Brossa, E., Rodríguez-Valera, F., & Amann, R. (1999). Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environmental Microbiology, 1, 517–523.

    Article  Google Scholar 

  • Ayadi, H., Abid, O., Elloumi, J., Bouaïn, A., & Sime-Ngando, T. (2004). Structure of the phytoplankton in two lagoons of different salinity in the Sfax saltern (Tunisia). Journal of Plankton Research, 26, 669–679.

    Article  Google Scholar 

  • Ayadi, H., Toumi, N., Abid, O., Medhioub, K., Hammami, M., Sime-Ngando, T., Amblard, C., & Sargos, D. (2002). Etude qualitative et quantitative des peuplement phytoplanctoniques et zooplanctoniques dans les bassins de la saline de Sfax, Tunisie. Revue des Sciences de l’Eau, 15, 123–135.

    Google Scholar 

  • Balech, E. (1988). Los dinoflagelados del Atlantico sudoccidental. Madrid: Instituto Español de Oceanografia (Publicaciones especiales).

    Google Scholar 

  • Balech, E. (1995). The genus Alexandrium Halim (Dinoflagellata). Special publication, Sherkin Island Marine Station, Cork.

  • Bettarel, Y., Sime-Ngando, T., Amblard, C., Carrias, J. F., & Portelli, C. (2003). Virioplankton and microbial communities in aquatic systems: A seasonal study in two lakes of differing trophy. Freshwater Biology, 48, 810–822.

    Article  Google Scholar 

  • Bigot, M., Saliot, A., Qiu, Y. J., Yang, Z., & Tang, Y. (1990). In G. Yu, et al. (Ed.) Hydrocarbons in surficial sediments from the Changjiang estuary and adjacent East China Sea: Biogeochemical Study of the Changjiang Estuary pp. 667–675. China: China Ocean Press.

  • Blumer, M., Guillard, R. R. L., & Chase, T. (1971). Hydrocarbons of marine phytoplankton. Marine Biology, 8, 183–189.

    Article  CAS  Google Scholar 

  • Bohem, P., & Requejo, A. G. (1986). Overview of the recent sediment hydrocarbon geochemistry of Atlantic and Gulf Coast outer continental shelf environments. Estuarine, Coastal and Shelf Science, 23, 29–58.

    Article  Google Scholar 

  • Boulboubassi, I., Lipiatou, E., Saliot, A., Tolosa, I., Bayona, J. M., & Albaigés, J. (1997). Carbon sources and cycle in the western Mediterranean: II. The use of molecular markers to determine the origin of organic matter. Deep Sea Research, 44, 781–799.

    Article  Google Scholar 

  • Bouloubassi, I., & Saliot, A. (1993). Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanologica Acta, 16, 145–161.

    CAS  Google Scholar 

  • Bradford-Grieve, J. M., Markhaseva, E. L., Rocha, C. E. F., & Abiahy, B. (1999). Copepoda. In: Boltovskoy (Ed.) South Atlantic Zooplankton, 2, 869–1098.

  • Broman, D., Colmsjo, A., Ganning, B., Naf, C., Zebuhr, Y., & Ostman, C. (1987). Fingerprinting petroleum hydrocarbons in bottom sediment, plankton, and sediment trap collected seston. Marine Pollution Bulletin, 18, 380–388.

    Article  CAS  Google Scholar 

  • Butinar, L., Santos, S., Spencer-Martins, I., Oren, A., & Gunde-Cimerman, N. (2005). Yeast diversity in hypersaline habitats. FEMS Microbiology Letters, 244, 229–234.

    Article  CAS  Google Scholar 

  • Clarck JR., R. C., & Blumer, M. (1967). Distribution of paraffins in marine organisms and sediment. Limnology and Oceanography, 12, 79–87.

  • Clarck, R. C. JR., & Finley, J. S., (1973). Techniques for analysis of paraffin hydrocarbons and for interpretation of data to asses oil spill effects in aquatic organisms. (Paper presented at the Conference on Prevention and Control of Oil Spills of the American Petroleum Institute, Washington, DC).

  • Colombo, J. C., Pelletier, Ch., Brochu, A., Khalil, M., & Catoggio, J. A. (1989). Determination of hydrocarbons sources using n-alkanes and polyaromatic hydrocarbons distribution indexes. Case study: Río de La Plata Estuary, Argentina. Environmental Science and Technology, 23, 888–894.

    Article  CAS  Google Scholar 

  • Commendatore, M. G., & Esteves, J. L. (2004). Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Marine Pollution Bulletin, 48, 910–918.

    Article  CAS  Google Scholar 

  • Cornée, A. (1983). Sur les bactéries des saumures et des sédiments de marais salants méditerranéens. Importance et rôle sédimentologique. Thèse Géologie, Micropaléontologie. Université Pierre et Marie Curie, 113pp + Annexes.

  • Cornée, A. (1984). Etude préliminaire des bactéries des saumures et des sédiments des salins de Santa Pola (Espagne). Comparaison avec les marais salant de salin-de-Giraud (Sud de la France). Review Investigation Geology, 38, 109–122.

    Google Scholar 

  • Cranwell, P. A. (1982). Lipids of aquatic sediments and sediment-ing particulate matter. Progress in Lipid Research, 21, 271–308.

    Article  CAS  Google Scholar 

  • Cranwell, P. A., Eglinton, G., & Robinson, N. (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments. 2. Organic Geochemistry, 11, 513–527.

    Article  CAS  Google Scholar 

  • Dodge, J. D. (1985). Atlas of dinoflagellates. A scanning electron microscope survey. London: Ferrand Press.

    Google Scholar 

  • Domaizon, I., Viboud, S., & Fontvieille, D. (2003). Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy—Importance of mixotrophy. FEMS Microbial Ecology, 46, 317–329.

    Article  CAS  Google Scholar 

  • Duan, Y., & Lanhua, M. (2001). Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet plateau, China). Organic Geochemistry, 32, 1429–1442.

    Article  CAS  Google Scholar 

  • Eglinton, G., & Hamilton, R. G. (1967). Leaf epiculturar waxes. Science, 156, 1322–1334.

    Article  CAS  Google Scholar 

  • Elloumi, J., Carrias, J. F., Ayadi, H., Sime-Ngando, T., Boukhris, M., & Bouaïn, A. (2006). Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuarine, Coastal and Shelf Science, 67, 21–29.

    Article  Google Scholar 

  • Estrada, M., Peter, H., Gasol, M. J., Casamayor, O. E., & Pedrós-Alió, C. (2004). Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbial Ecology, 49, 281–293.

    Article  CAS  Google Scholar 

  • Farrington, J. W. (1980). An overview of the biogeochemistry of fossil fuel hydrocarbons in the marine environment. In L. Petrakis, & F. Weiss (Eds.) Petroleum in the marine environment: Adv. In Chem. Series, no. 185 (pp. 1–22). Washington, DC: ACS.

    Google Scholar 

  • Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 3, 745–749.

    Article  Google Scholar 

  • Friedman, G. M. (1980). Review of depositional environment in evaporate deposits and the role of evaporates in hydrocarbon accumulation. Bulletin du Centre de Recherche et d’Exploration des Profondeurs. Elf-Aquitaine, Pau, 4, 589–608.

    CAS  Google Scholar 

  • Gasol, J. M., Casamayor, E. O., Joint, I., Garde, K., Gustavson, K., & Benlloch, S., et al. (2004). Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquatic Microbial Ecology, 34, 193–206.

    Article  Google Scholar 

  • Gearing, P., Gearing, J. N., & Lytles, J. S. (1976). Hydrocarbons in 60 north-east Gulf of Mexico shelf sediments: Preminary survey. Geochemica et Cosmochomica Acta, 40, 1005–1017.

    Article  CAS  Google Scholar 

  • Gelpi, E., Schneider, H., Mann, J., & Oro, J. (1970). Hydrocarbons of geochemical signifiance in microscopic algae. Phytochemistry, 9, 603–612.

    Article  CAS  Google Scholar 

  • Gogou, A., & Stephanou, E. G. (2004). Marine organic geochemistry of the Eastern Mediterranean: 2. Polar biomarkers in Cretan Sea surficial sediments. Marine Chemistry, 85, 1–25.

    Article  CAS  Google Scholar 

  • Gomes, A. O., & Azevedo, D. A. (2003). Aliphatic and aromatic hydrocarbons in tropical recent sediments of Campos dos Goytacazes,RJ, Brazil. Journal of The Brazilian Chemical Society, Brasil, 14, 358–368.

    Google Scholar 

  • Grimalt, J. O., & Albaiges, J. (1987). Sources and occurrence of C12–C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta, 51, 1379–1384.

    Article  CAS  Google Scholar 

  • Grossi, V., Massias, D., Stora, G., & Bertrand, J. C. (2002). Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere, 48, 947–954.

    Article  CAS  Google Scholar 

  • Gschwend, P., Mc Farlane, J. K., & Newman, K. A. (1985). Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science, 227, 1033–1035.

    Article  CAS  Google Scholar 

  • Han, J., & Calvin, (1969). Hydrocarbons distribution of algae and bacteria and microbiological activity in sediments. Proceedings of the National Academy of Sciences, USA, 64, 436–443.

    Article  CAS  Google Scholar 

  • Helz, G. R., & Hsu, R. Y. (1978). Volatile chloro- and bromocarbons in coastal waters. Limnology and Oceanography, 23, 858–869.

    CAS  Google Scholar 

  • Hobbie, J. E., Daley, R. J., & Jasper, S. (1977). Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33, 1225–1228.

    CAS  Google Scholar 

  • Huber-Pestalozzi, G. (1968). Das phytoplankton des Susswassars, 1. Halfte, Cryptophyceae, Chloromonadophyceae, Dinophyceae. Stuttgart: E. Schweizerbart Verlag.

    Google Scholar 

  • Jeng, W. L. (2006). Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry, 102, 242–251.

    Article  CAS  Google Scholar 

  • Jeng, W. L., & Huh, Ch. A. (2004). Lipids in suspended matter and sediments from the East China Sea Shelf. Organic Geochemistry, 35, 647–660.

    Article  CAS  Google Scholar 

  • Jeng, W. L., Lin, S., & Kao, S. J. (2003). Distribution of terrigenous lipids in marine sediments off northeastern Taiwan. Deep-Sea Research II, 50, 1179–1201.

    Article  CAS  Google Scholar 

  • Joint, I., Henrikson, P., Garde, K., & Riemann, B. (2002). Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient. Microbial Ecology, 39, 245–257.

    Article  CAS  Google Scholar 

  • Kallel, M., Medhioub, K., Oudot, J., & Saliot, A. (1991). Evolution des hydrocarbures et des acides gras dans les eaux usées. Symposium International sur la Géologie Urbaine, 324–335.

  • Kaplan, I. R., & Friedman, A. (1970). Biological productivity in the Dead Sea Part. I. Microorganisms in the water column. Israel Journal of Chemistry, 8, 513–528.

    CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., & Bear, D. V., et al. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Kunst, L., & Samuels, A. L. (2003). Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 42, 51–80.

    Article  CAS  Google Scholar 

  • Lacaze, J. C. (1980). La pollution pétrolière en milieu marin de la toxicologie à l’écologie. Masson Paris New York Barcelone Milan 1980. Collection écologie appliquée et sciences de l’environnement sous la direction du Pr. F. RAMADE.

  • Lecaros, O. P., Alberti, P., & Astorga, M. S. (1991). Hidrocarburos parafinicos en aguas del Estrecho de Magallanes. Revista di Biología Marina, 26, 61–74.

    Google Scholar 

  • Lipiatou, E., & Saliot, A. (1993). Investigation of anthropogenic and natural organic inputs in estuaire sediments using hydrocarbons markers (NAH, LAB, PAH). Oceanologia Acta, 16, 145–161.

    Google Scholar 

  • Lipiatou, E., Tolosa, I., Simo, R., Bouloubassi, I., Dachs, J., & Marti, S., et al. (1997). Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean Sea. Deep-Sea Research II, 44, 881–905.

    Article  CAS  Google Scholar 

  • Lytle, J. S., Lytle, T. F., Gearing, J. N., & Gearing, P. J. (1979). Hydrocarbons on benthic algae from the eastern Gulf of Mexico. Marine Biology, 51, 279–288.

    Article  CAS  Google Scholar 

  • Margesin, R., & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments (invited review). Applied Microbiology and Biotechnology, 56, 650–663.

    Article  CAS  Google Scholar 

  • McGenity, J. T., Gemmell, T. R., Grant, D. W., & Stan-Lotter, H. (2000). Origins of halophilic microorganisms in ancient salt deposits. Environmental Microbiology, 2, 243–250.

    Article  CAS  Google Scholar 

  • Medeiros, P. M., & Bícego, M. C. (2004). Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers. II. São Sebastião, SP—Brazil. Marine Pollution Bulletin, 49, 892–899.

    Article  CAS  Google Scholar 

  • Meyers, P. A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34, 261–289.

    Article  CAS  Google Scholar 

  • Moore, (1976). Volatiles compounds from the marine algae. Academic Chemistry Research, 10, 4–47.

    Google Scholar 

  • Murphy, J., & Rilly, J. P. (1962). A modified single solution method for the determination of phosphate in natural water. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Newman, K. A., & Gschwend, P. M. (1987). A method for quantitative determination of volatile organic compounds in marine macroalgae. Limnology Oceanography, 32, 702–708.

    Article  CAS  Google Scholar 

  • Nishimura, , & Baker, . (1986). Possible origin of n-alcanes with a remarkable even to add predominance in recent marine sediments. Geochimica et Cosmochimica Acta, 50, 299–305.

    Article  CAS  Google Scholar 

  • Oren, A. (1999). Microbiology and biochemistry of hypersaline environments. London: CRC Press.

    Google Scholar 

  • Oren, A. (2000). In B. A. Whitton, & M. Potts (Eds.) Salt and brines: The Ecology of cyanobacteria. Dordrecht: Kluwer.

  • Oren, A. (2002). Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiology Ecology, 39, 1–7.

    Article  CAS  Google Scholar 

  • Oren, A., & Rodriguez-Valera, F. (2001). The distribution of halophilic bacteria to red coloration of saltern crystallizer ponds. FEMS Microbiology Ecology, 36, 123–130.

    CAS  Google Scholar 

  • Pandey, D. B., & Yeragi, G. S. (2004). Preliminary and mass culture experiments on a heterotrichous ciliate, Fabrea salina. Aquaculture, 232, 241–254.

    Article  Google Scholar 

  • Paoletti, C., Pushparaj, B., Florezano, G., Cappella, P., & Lercker, G. (1976). Unsaponifiable matter of green and blue–green algal lipids as a factor of biochemical differentiation of their biomass. I. Total unsaponifiable and hydrocarbon fraction. Lipids, 11, 258–265.

    Article  CAS  Google Scholar 

  • Pašić, L., Bartual, G. S., Ulrih, P. N., Grabnar, M., & Velikonja, H. B. (2005). Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiology Ecology, 54, 491–498.

    Article  CAS  Google Scholar 

  • Patience, R. L., Rowland, S. J., & Maxwell, J. R. (1978). The effect of maturation on the configuration of pristine in sediments and petroleum. Geochimica et Cosmochimica Acta, 42, 1871–1875.

    Article  CAS  Google Scholar 

  • Pedro, C., Estévez-Blanco, P., Marañón, E., & Fernández, E. (2005). Maximum photosynthetic efficiency of size-fractionated phytoplankton assessed by 14C uptake and fast repetition rate fluorometry. Limnology and Oceanography, 50, 1438–1446.

    Article  Google Scholar 

  • Pedrós-Alió, C. (2003). In A. Ventosa (Ed.) Trophic ecology of solar saltern Halophilic microorganisms pp. 33–48. Berlin: Springer-Verlag.

  • Pedrós-Alió, C., Calderon-Paz, J. I., MacLean, M., Medina, G., Marrasé, C., & Gasol, J. M., et al. (2000). The microbial food web along salinity gradients. Microbial Ecology, 32, 143–155.

    Google Scholar 

  • Peters, K. E., & Moldowan, J. M. (1993). The biomarker guide interpreting molecular fossils in petroleum and ancient sediment (p 363). Prentice, Engle Wood Cliffs; NJ.

  • Petz, W. (1999). In D. Boltovsky (Ed.) South Atlantic Zooplankton pp. 265–319. Leiden, The Netherlands: Backhuys.

  • Post, F. (1977). The microbial ecology of the Great Salt Lake. Microbial Ecology, 3, 143–165.

    Article  CAS  Google Scholar 

  • Quintana, X. D. (2002). Measuring the intensity of disturbance in zooplankton communities of Mediterranean salt marshes using multivariate analysis. Journal of Plankton Research, 24, 255–265.

    Article  Google Scholar 

  • Requejo, A. G., & Quinn, J. (1984). C25 and C30 biogenic alkenes in sediments core from the upper anoxic basin of the Pettaquamscutt River (Rhode Island, USA.). Organic Geochimistry, 7, 1–10.

    Article  CAS  Google Scholar 

  • Rose, M. (1933). Copépodes pélagiques. Faune de la France (26), 375 p.

  • Saliot, A. (1981). In E. K. Duursma, & R. Dawson (Eds.) Natural hydrocarbons in sea water Marine organic chemistry pp. 327–374. Amsterdam: Elsevier.

  • Scor-Unesco (1966). Determination of photosynthetic pigments in seawater. SCOR/UNESCO WG 17, UNESCO, 1, Paris.

  • Scribe, P., Ngoumbi, , Nzouzi, J. S., Fuche, C., Pepe, C., & Saliot, A. (1990). Biogeochemistry of organic matter in Lake Geneva: I-Particulate hydrocarbons as biogenic and anthropogenic molecular markers.. Hydrobiologia, 207, 319–331.

    Article  CAS  Google Scholar 

  • Sellali, B., Benchekh, S., Azzouz, M., & Boudjellali, B. (2001). Niveaux, sources et origines des hydrocarbures dans le sédiment superficiel du Golf d’Arzew (Algérie). Rapport de la Commission Internationale de la Mer Méditerranée, 36, 163.

    Google Scholar 

  • Sherr, E. B., Sherr, B. F., Wheeler, P. A., & Thompson, K. (2003). Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep Sea Research I, 50, 557–571.

    Article  Google Scholar 

  • Simoneit, B. R. T., Cox, R. E., & Standley, L. J. (1988). Organic matter of the troposphere-IV: lipids in Harmttan aerosols of Nigeria. Atmospheric Environment, 22, 983–1004.

    Article  CAS  Google Scholar 

  • Sin, Y., & Wetzel, R. L. (2000). Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). Journal of Plankton Research, 22, 1945–1960.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Rijpstra, W. I. C., Schouten, S., Peletier, H., Van der Maarel, M. J. E. C., & Gieskes, W. W. C. (1999). A C25 highly branched isoprenoid alkene and C25 and C27 n-polyenes in the marine diatom Rhizosolenia setigera. Organic Geochemistry, 30, 95–100.

    Article  CAS  Google Scholar 

  • Strüder-Kypke, M. C., & Montagnes, D. J. S. (2002). Development of web-based guides to planktonic protists. Aquatic Microbial Ecology, 27, 203–207.

    Article  Google Scholar 

  • Tehei, M., Franzetti, B., Maurel, M. C., Vergne, J., Hountondji, C., & Zaccai, G. (2002). The search for traces of life: The protective effect of salt on biological macromolecules. Extremophiles, 6, 427–430.

    Article  CAS  Google Scholar 

  • Tolosa, I., De Mora, S., Sheikholeslami, M. R., Bartocci, V. J., & Cattini, C. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Pollution Bulletin, 48, 44–60.

    Article  CAS  Google Scholar 

  • Tomas, C. R., Hasle, G. R., Steidinger, A. K., Syvertsen, E. E., & Tangen, C. (1996). Identifing marine diatoms and dinoflagellates. Academic: New York.

  • Tomas, C. R., Throndsen, J., & Heimdal, B. R. (1993). Marine phytoplankton, a guide to naked flagellates and coccolithophorids. Academic: New York.

  • Toumi, N., Ayadi, H., Abid, O., Carrias, J. F., & Sime-Ngando, T. (2005). Zooplankton in four ponds of different salinity: a seasonal study in the solar salterns of Sfax (Tunisia). Hydrobiologia, 534, 1–9.

    Article  Google Scholar 

  • Tregouboff, G., & Rose, M. (1957). Manuel de planctonologie méditerranéenne Vol. II. Paris: CNRS.

    Google Scholar 

  • UNEP (United Nations Environment Programme) (1991). Determinations of petroleum hydrocarbons in sediments.. Reference Methods for Marine Pollution Studies, 20, 97.

    Google Scholar 

  • Uthermöhl, H. (1958). Zur vervolkommung der quantitativen phytoplankton Methodik Internationale Verein. Limnologie, 9, 1–38.

    Google Scholar 

  • Venkatesan, M. I., & Kaplan, J. R. (1987). The lipid geochemistry of Antarctic marine sediments: Bransfield Strait. Marine Chemistry, 21, 347–375.

    Article  CAS  Google Scholar 

  • Venkatesan, M. I., Ruth, E., Steinberg, S., & Kaplan, I. R. (1987). Organic geochemistry of sediments from the continental margin o. southern New England, USA. Part II: Lipids. Marine Chemistry, 21, 267–299.

    Article  CAS  Google Scholar 

  • Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., & Gelin, F. (1998). Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29, 1163–1179.

    Article  CAS  Google Scholar 

  • Volkman, J., Holdsworth, D., Neill, G., & Bavor, H. (1992). Identifcation of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of the Total Environment, 112, 203–219.

    Article  CAS  Google Scholar 

  • Walsby, A. E. (1980). A square bacterium. Nature, 283, 69–71.

    Article  Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (2000). Limnological analysis.. Springer-Verlag, New York: Basic Books.

    Google Scholar 

  • Winters, K., Parker, P. L., & Van Baalen, C. (1969). Hydrocarbons of blue–green algae: geochemical significance. Science, 158, 467–468.

    Article  Google Scholar 

  • Youngblood, W. W., Blumer, M., Guillard, R. L., & Fiore, F. (1971). Saturated and unsaturated hydrocarbons in marine benthic algae. Marine Biology, 8, 190–201.

    Article  CAS  Google Scholar 

  • Zhu, Y., Liu, H., Cheng, H., Xi, Z., Liu, X., & Xu, X. (2005). The distribution and source apportionment of aliphatic hydrocarbons in soils from the outskirts of Beijing. Organic Geochemistry, 36, 475–483.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the staff of the Sfax Saltern Company. This study was supported by the University of Franche-Comté (France) and the Tunisian Ministry of Scientific Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elloumi, J., Guermazi, W., Ayadi, H. et al. Detection of Water and Sediments Pollution of An Arid Saltern (Sfax, Tunisia) by Coupling the Distribution of Microorganisms With Hydrocarbons. Water Air Soil Pollut 187, 157–171 (2008). https://doi.org/10.1007/s11270-007-9505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9505-y

Keywords

Navigation