Skip to main content

Advertisement

Log in

In-Stream Processing of Sediment-Associated Metals in Peatland Fluvial Systems

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The interaction between fluvially transported, metal contaminated peat particulates and acidic waters draining peatland catchments has received limited attention. Potential in-stream processing of sediment-associated metals in acidic stream water was investigated in laboratory based mixing experiments, designed to represent conditions of fluvial sediment transport in a highly contaminated and severely eroding peatland catchment in the Peak District (UK). Over the initial 20 min of the first experiment, stream water Cr and Zn concentrations increased by at least an order-of-magnitude and remained elevated for the full duration (24 h) of the experiment. Stream water As, Mo, Pb, Ti and V concentrations increased between 43% (As) and 440% (V) over the first hour of the experiment. After 24 h most of the metals appeared to have reached equilibrium in the water column. Results of the second experiment revealed that when the concentration of metal contaminated peat particulates is increased, there is an associated increase in the stream water As, Cr, Mo, Pb, Ti, V and Zn concentrations. The experimental data suggest that As, Cr, Mo, Pb, Ti, V and Zn are liable to desorption from metal contaminated peat into acidic stream water. The solubilisation of contaminated peat particulates may also contribute to elevated stream water metal concentrations. The laboratory based approach used in this study may indicate that when there is erosion of metal contaminated peat into acidic fluvial systems there is a concomitant increase in dissolved metal levels, especially when suspended sediment concentrations are high. Further laboratory and field based experiments are required to evaluate the relative importance of physical and chemical processes in the interaction between contaminated peat particulates and stream water in peatland fluvial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, S. J., Whitten, L. J., Murray, M., Duggan, O. & Brown, P. (1997). The adsorption of pollutants by peat, lignite and activated chars. Journal of Chemical Technology and Biotechnology, 68, 442–452.

    Article  CAS  Google Scholar 

  • Anderson, P., Tallis, J. H., & Yalden, D. W. (1997). Restoring Moorland: Peak District Moorland Management Project. Phase 3 Report. Bakewell: Peak Park Joint Planning Board.

    Google Scholar 

  • Baker, B. J., & Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2), 139–152.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Fitzgerald, W. F., & Damman, A. W. H. (1998). The biogeochemistry of an ombrotrophic bog: evaluation of use as an archive of atmospheric mercury deposition. Environmental Research, 78, 118–133.

    Article  CAS  Google Scholar 

  • Bindler, R., Klarqvist, M., Klaminder, J., & Forster, J. (2004). Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden. Global Biogeochemical Cycles, 18, 1–11.

    Article  CAS  Google Scholar 

  • Bordas, F., & Bourg, A. C. M. (2001). Effect of solid/liquid ratio on the remobilization of Cu, Pb, Cd and Zn from polluted river sediment. Water Air and Soil Pollution, 128, 391–400.

    Article  CAS  Google Scholar 

  • Bubb, J. M., & Lester, J. N. (1988). The impact of heavy metals on lowland rivers and the implications for man and the environment. Science of the Total Environment, 100, 207–233.

    Article  Google Scholar 

  • Chapman, P. J., Reynolds, B., & Wheater, H. S. (1993). Hydrochemical changes along stormflow pathways in a small moorland headwater catchment in Mid-Wales, UK. Journal of Hydrology, 151, 241–265.

    Article  CAS  Google Scholar 

  • Crist, R. H., Martin, J. R., Chonko, J., & Crist, D. R. (1996). Uptake of metals on peat moss: an ion-exchange process. Environmental Science and Technology 30, 2456–2461.

    Article  CAS  Google Scholar 

  • Daniels, S. (2006). Controls on streamwater acidity in South Pennine peatland headwater catchments. Unpublished PhD Thesis: The University of Manchester.

  • Evans, M. G., Allott, T. E. H., Holden, J., Flitcroft, C., & Bonn, A. (2005). Understanding gully blocking in deep peat. Derbyshire: Moors for the Future Report No. 4.

  • Evans, M. G., Warburton, J., & Yang, J. (2006). Sediment budgets for eroding blanket peat catchments: Global and local implications of upland organic sediment budgets. Geomorphology, 79(1–2), 45–57.

    Article  Google Scholar 

  • Farmer, J. G., Graham, M. C., Bacon, J. R., Dunn, S. M., Vinogradoff, S. I., & MacKenzie, A. B. (2005). Isotopic characterisation of the historical lead deposition record at Glensaugh, an organic-rich upland catchment in rural N.E. Scotland. Science of the Total Environment, 346, 121–137.

    Article  CAS  Google Scholar 

  • Foster, I. D. L., & Charlesworth, S. M. (1996). Heavy metals in the hydrological cycle: trends and explanation. Hydrological Processes, 10, 227–261.

    Article  Google Scholar 

  • Franchi, A., & Davis, A. P. (1997). Desorption of cadmium(II) from artificially contaminated sediments. Water Air and Soil Pollution, 100, 181–196.

    Article  CAS  Google Scholar 

  • Frank, J., Krachler, M., & Shotyk, W. (2003). Atmospheric deposition of arsenic and selenium in ombrotrophic peat bogs. Journal De Physique IV, 107, 1427.

    Article  Google Scholar 

  • Graham, M. C., Vinogradoff, S. I., Chipchase, A. J., Dunn, S. M., Bacon, J. R., & Farmer, J. G. (2006). Using size fractionation and Pb isotopes to study Pb transport in the waters of an organic-rich upland catchment. Environmental Science and Technology, 40, 1250–1256.

    Article  CAS  Google Scholar 

  • Gundersen, P., & Steinnes, E. (2001). Influence of temporal variations in river discharge, pH, alkalinity and Ca on the speciation and concentration of heavy metals in some mining polluted rivers. Aquatic Geochemistry, 7(3), 173–193.

    Article  CAS  Google Scholar 

  • Gundersen, P., & Steinnes, E. (2003). Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Research, 37, 307–318.

    Article  CAS  Google Scholar 

  • Ho, Y. S., John Wase, D. A., & Forster, C. F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Research, 29(5), 1327–1332.

    Article  CAS  Google Scholar 

  • Holden, J., & Burt, T.P. (2002). Infiltration, runoff and sediment production in blanket peat catchments: implications of field rainfall experiments. Hydrological Processes, 16, 2537–2557.

    Article  Google Scholar 

  • Horowitz, A. J. (1995). The use of suspended sediment and associated trace elements in water quality studies. IAHS Special Publication 4. Wallingford: IAHS Press.

  • Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2, 437–451.

    Article  CAS  Google Scholar 

  • Islam F. S., Boothman C., Gault A. G., Polya D. A., & Lloyd J. R. (2005). Potential role of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments. Mineralogical Magazine, 69(5), 865–875.

    Article  CAS  Google Scholar 

  • Jackson, B. P., Ranville, J. F., Bertsch, P. M., & Sowder, A. G. (2005). Characterization of colloidal and humic-bound Ni and U in the “dissolved” fraction of contaminated sediment extracts. Environmental Science Technology, 39, 2478–2485.

    Article  CAS  Google Scholar 

  • Krachler, M., & Shotyk, W. (2004). Natural and anthropogenic enrichments of molybdenum, thorium, and uranium in a complete peat bog profile, Jura Mountains, Switzerland. Journal of Environmental Monitoring, 6, 418–426.

    Article  CAS  Google Scholar 

  • Lawlor, A. J., & Tipping, E. (2003). Metals in bulk deposition and surface waters at two upland locations in northern England. Environmental Pollution, 121, 153–167.

    Article  CAS  Google Scholar 

  • Lee, J. A., & Tallis, J. H. (1979). Regional and historical aspects of lead pollution in Britain. Nature, 245(5422), 216–218.

    Article  Google Scholar 

  • Linton, P.E., Shotbolt, L., & Thomas, A.D. (2007). Microbial communities in long-term heavy metal contaminated ombrotrophic peats. Water Air and Soil Pollution. (in press)

  • Livett, E. A., Lee, J. A., & Tallis, J. H. (1979). Lead, zinc and copper analyses of British blanket peats. Journal Ecology, 67, 865–891.

    Article  CAS  Google Scholar 

  • Markert, B., & Thornton, I. (1990). Multi-element analysis of an English peat bog soil. Water Air and Soil Pollution, 49, 113–123.

    Article  CAS  Google Scholar 

  • Martinez Cortizas, A., Pontevedra Pombal, X., Garcýa-Rodeja, E., Novoa Munoz, J. C., & Shotyk, W. (1999). Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science, 284, 939–942.

    Article  CAS  Google Scholar 

  • McKay, G., & Porter, J. F. (1997). Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. Journal of Chemical Technology Biotechnology, 69, 309–320.

    Article  CAS  Google Scholar 

  • Mighall, T. M., Abrahams, P. W., Grattan, J. P., Hayes, D., Timberlake, S., & Forsyth, S., (2002). Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, UK. Science of the Total Environmental, 292, 69–80.

    Article  CAS  Google Scholar 

  • Nieminen, T. M., Ukonmaanaho, L., & Shotyk, W. (2002). Enrichment of Cu, Ni, Zn, Pb and As in an ombrotrophic peat bog near a Cu–Ni smelter in Southwest Finland. Science of the Total Environmental, 292, 81–89.

    Article  CAS  Google Scholar 

  • Rausch, N., Nieminen, T. M., Ukonmaanaho, L., Krachler, M., & Shotyk, W. (2005). Porewater evidence of metal (Cu, Ni, Co, Zn, Cd) mobilization in an acidic, ombrotrophic bog impacted by a smelter, Harjavalta, Finland and comparison with reference sites. Environmental Science and Technology, 39(21), 8207–8213.

    Article  CAS  Google Scholar 

  • Ringqvist, L., & Öborn, I. (2002). Copper and zinc adsorption onto poorly humified Sphagnum and Carex peat. Water Research, 36, 2233–2242.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Evans, M. G., Lindsay, J. B., & Allott, T. E. H. (2007). Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK. Environmental Pollution, 145, 111–120.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Evans, M. G., Liddaman, L. C., & Allott, T. E. H. (2007b). The role of wildfire and gully erosion in particulate lead export from contaminated peatland catchments in the southern Pennines, UK Geomorphology, 88, 276–284.

    Article  Google Scholar 

  • Rothwell, J. J., Robinson, S. G., Evans, M. G., Yang, J., & Allott, T. E. H. (2005). Heavy metal release by peat erosion in the Peak District, southern Pennines, UK. Hydrological Processes, 19, 2973–2989.

    Article  CAS  Google Scholar 

  • Salomons, W., & Forstner, U. (1984). Metals in the hydrocycle. Berlin: Springer.

    Google Scholar 

  • Sharma, D. C. &, Foster, C. F. (1993). Removal of hexavalent chromium using Sphagnum moss peat. Water Research, 27, 1201–1208.

    Article  CAS  Google Scholar 

  • Shotbolt, L., Hutchinson, S. M., & Thomas, A.D. (2006). Sediment stratigraphy and heavy metal fluxes to reservoir sediments in the southern Pennine uplands, UK. Journal of Paleolimnology, 35, 305–322.

    Article  Google Scholar 

  • Shotyk, W., Blaser, P., Grunig, A., & Cheburkin, A. K. (2000). A new approach for quantifying cumulative, anthropogenic, atmospheric lead deposition using peat cores from bogs: Pb in eight Swiss peat bog profiles. Science of the Total Environmental, 249, 281–295.

    Article  CAS  Google Scholar 

  • Smith, E. J., Hughes, S., Lawlor, A. J., Lofts, S., Simon, B. M., Stevens, P. A., et al. (2005). Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Environmental Pollution, 136, 11–18.

    Article  CAS  Google Scholar 

  • Stone, M., & Droppo, I. G. (1996). Distribution of lead, copper and zinc in size-fraction river bed sediment in two agicultural catchments of southern Ontario, Canada. Environmental Pollution, 93(3), 353–362.

    Article  CAS  Google Scholar 

  • Tipping, E. (2002). Cation binding by humic substances. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tipping, E., Lawlor, A. J., Lofts, S., & Shotbolt, L. (2006). Simulating the long-term chemistry of an upland UK catchment: Heavy metals. Environmental Pollution, 141, 139–150.

    Article  CAS  Google Scholar 

  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M. R., Lofts, S., Hill, M. T. et al. (2003a). The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 125, 213–225.

    Article  CAS  Google Scholar 

  • Tipping, E., Smith, E. J., Lawlor, A. J., Hughes, S., & Stevens, P. A. (2003b). Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environmental Pollution, 123, 239–253.

    Article  CAS  Google Scholar 

  • Turetsky, M. R., Manning, S. W., & Weider, K. R. (2004). Dating recent peat deposits. Wetlands, 24, 324–356.

    Article  Google Scholar 

  • Ukonmaanaho, L., Nieminen, T. M., Rausch, N., & Shotyk, W. (2004). Heavy metal and arsenic profiles in ombrogenous peat cores from four differently loaded areas in Finland. Water Air and Soil Pollution, 158(1–4), 277–294.

    Article  CAS  Google Scholar 

  • Vile, M. A., Wieder, R. K., & Novak, M. (2000). 200 years of Pb deposition throughout the Czech Republic; patterns and sources. Environmental Science Technology, 34, 12–21.

    Article  CAS  Google Scholar 

  • Walling, D. E., Owens, P. N., Carter, J., Leeks, G. J. L., Lewis, S., Meharg, A. A., et al. (2003). Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied Geochemistry, 18, 195–220.

    Article  CAS  Google Scholar 

  • Walsh, R. P. D., Blake, W. H., Garbett-Davies, H. R., James, J. G., & Barnsley, M. J. (2007). Downstream changes in bed-sediment and streamwater metal concentrations along a watercourse in a rehabilitated post-industrial landscape in South Wales. Water Air and Soil Pollution, 181, 107–113.

    Article  CAS  Google Scholar 

  • WHO (2006). Guidelines for drinking water quality. First Addendum to third edition. Geneva: World Health Organisation.

  • Weiss, D., Shotyk, W., Appleby, P. G., Kramers, J. D., & Cheburkin, A. K. (1999). Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles. Enrichment factors, fluxes, isotopic composition and sources. Environmental Science Technology, 33, 1340–1352.

    Article  CAS  Google Scholar 

  • Worrall, F., Burt, T. P., & Adamson, J.K. (2003). Controls on the chemistry of runoff from an upland peat catchment. Hydrological Processes, 17, 2063–2083.

    Article  Google Scholar 

  • Worrall, F., Burt, T. P., Jaeban, R. Y., Warburton, J., & Shedden, R. (2002). Release of dissolved organic carbon from upland peat. Hydrological Processes, 16, 3487–3504.

    Article  Google Scholar 

  • Yang, J. (2005). Monitoring and modelling sediment flux for upland peat catchments. Unpublished PhD Thesis: The University of Manchester.

  • Yang, H., Rose, N. L., Boyle, J. F., & Battarbee, R. W. (2001). Storage and distribution of trace metals and spheroidal carbonaceous particles (SCPs) from atmospheric deposition in the catchment peats of Lochnagar, Scotland. Environmental Pollution, 115, 231–238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks go to The University of Manchester and Moors for the Future for funding, John Moore and Michael Clark for laboratory assistance, Paul Warren for ICP-AES analysis and Paul Lythgoe for ICP-MS analysis. We would also like to thank Elizabeth Young and an anonymous reviewer for helpful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Rothwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothwell, J.J., Evans, M.G. & Allott, T.E.H. In-Stream Processing of Sediment-Associated Metals in Peatland Fluvial Systems. Water Air Soil Pollut 187, 53–64 (2008). https://doi.org/10.1007/s11270-007-9496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9496-8

Keywords

Navigation