Skip to main content
Log in

The Dynamics of Macroinvertebrate Assemblages in Response to Environmental Change in Four Basins of the Etueffont Landfill Leachate (Belfort, France)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We investigated the relationships between the composition and structure of macroinvertebrate communities and some environmental variables over a year in four basins of the Etueffont landfill leachate (Belfort, France) using co-inertia analysis. Culicidae larvae were the dominant macroinvertebrate group in the studied basins, contributing to 87% of the total zoobenthos density, followed by Corixidae (8.8%), Chironomids (2.5%) and other larvae (each <1%). The lowest density of chironomid larvae was recorded in the first basin which is used as a discharge system for the leachate produced by the landfill. In basin 4, however, the Baetidae, Orthocladiinae (Orthocladius spp., Chaetocladius spp. and Isocladius spp.) and Tanypodinae (Psectrotanypus spp.) developed favoured by low levels in ammonia, COD, BOD, EC, metals and high oxygen concentrations. The co-inertia analysis illustrated both temporal and spatial variabilities in the basins and revealed a strong relationship between environmental conditions and benthic macroinvertebrates assemblages. This ordination technique showed that the chironomid community structure might be used successfully to differentiate between sites with different levels and types of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alaoui, M. M., Aleya, L., & Devaux, J. (1994). Phosphorus exchanges between sediment and water in trophically different reservoirs. Water Research, 28, 1971–1980.

    Article  Google Scholar 

  • Aleya, L. (1991). The concept of ecological succession applied to an eutrophic lake through the seasonal coupling of diversity index and several parameters. Archives für Hydrobiologie, 120, 327–343.

    Google Scholar 

  • Aleya, L., Devaux, J., & Marvalin, O. (1988). Primary production and bacterial heterotrophic activity coupling in a eutrophic lake (Lake Aydat, France). Journal of Water Sciences, 1, 23–35.

    CAS  Google Scholar 

  • Battegazzore, M., & Renoldi, M. (1995). Integrated chemical and biological evaluations of the quality of the River Lambro (Italy). Water, Air and Soil Pollution, 83, 375–390.

    Article  CAS  Google Scholar 

  • Bazzanti, M. (2000). Ecological requirements of Chironomids (Diptera: Chironomidae) on the soft bottom of the river Arrone, Central Italy. Journal of Freshwater Ecology, 15, 397–409.

    Google Scholar 

  • Beman, J. M., Arrigo, K. R., & Matson, P. A. (2005). Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature, 10, 211–214.

    Article  CAS  Google Scholar 

  • Bettinetti, R., Croce, V., & Galassi, S. (2005). Ecological risk assessment for the recent case of DDT pollution in Lake Maggiore (Northern Italy). Water, Air and Soil Pollution, 162, 385–399.

    Article  CAS  Google Scholar 

  • Blaky, N. C. (1992). Model prediction of landfill leachate production (pp. 17–34). London, England: Elsevier Applied Science.

    Google Scholar 

  • Bookter, T. J. B., & Ham, R. (1982). Decomposition of solid waste in test lysimeters. Journal Environmental Engineering Division ASCE, 108, 1147–1170.

    Google Scholar 

  • Bouallam, S., & Nejmeddine, A. (2001). Effects of heavy metals – Cu, Hg, Cd – on three species of mosquitoes larvae (Diptera: Culicidae). Annales de Limnologie, 37, 49–57.

    Article  Google Scholar 

  • Boyd, T. J., & Osburn, C. L. (2004). Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Marine Chemistry, 89, 189–210.

    Article  CAS  Google Scholar 

  • Brooks, S. J., Udachin, V., & Williamson, B. J. (2005). Impact of copper smelting on lakes in the Southern Ural Mountains, Russia, inferred from chironomids. Journal of Paleolimnology, 33, 229–241.

    Article  Google Scholar 

  • Broza, M., & Halpem, M. (2001). Pathogen reservoirs: Chironomid egg masses and Vibrio cholereae. Nature, 412(6842), 40.

    Article  CAS  Google Scholar 

  • Campeau, S., Murkin, H. R., & Titman, R. D. (1994). Relative importance of algae and emergent plant litter to freshwater marsh invertebrates. Canadian Journal of Fisheries and Aquatic Sciences, 51, 681–692.

    Google Scholar 

  • Casellato, S., & Caneva, F. (1994). Composition and distribution of bottom oligochaete fauna in an eutrophic lake of North Italy (Lake Ledro). Hydrobiologia, 278, 87–92.

    Article  Google Scholar 

  • Chessel, D., & Dolédec, S. (1996). ADE, Version 4: Hypercard stacks and quick basic microsoft programme library for the analysis of environmental data. User’s manual. ESA CNRS 5023, Ecologie des Eaux Douces et des Grands Fleuves, Université Lyon 1, France.

  • Clements, W. H. (1991). Community responses of stream organisms to heavy metals: A review of observational and experimental approaches. In M. C. Newman & A. W. McIntosh (Eds.), Ecotoxicology of metals: Current concepts and applications (pp. 363–391). Boca Raton, FL: Lewis.

    Google Scholar 

  • Clements, W. H. (1994). Benthic invertebrate community responses to heavy metals in the upper Arkansas river basin, Colorado. Journal of the North American Benthological Society, 13, 30–44.

    Article  Google Scholar 

  • Clements, W. H., Cherry, D. S., & Van Hassel, J. H. (1992). Assessment of the impact of heavy metals on benthic communities at Clinch River (Virginia): Evaluation of an index of community sensitivity. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1686–1694.

    Google Scholar 

  • Coffman, W. P. (1984). Chironomidae. In R. W. Merritt & K. W. Cummins (Eds.), An introduction to the aquatic insects of North America (pp. 644–652). Dubuque, IA: Kendall/Hunt.

    Google Scholar 

  • Cole, J. J., Likens, G. E., & Stayer, D. L. (1988). Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnology and Oceanography, 27, 1080–1090.

    Article  Google Scholar 

  • Dolédec, S., & Chessel, D. (1994). Co-inertia analysis: An alternative method for studying species–environment relationships. Freshwater Biology, 31, 277–294.

    Article  Google Scholar 

  • Dudley, T. L. (1988). The roles of plant complexity and epiphyton in colonization of macrophytes by stream insects. Verhandlung International Verein Limnology, 23, 1153–1158.

    Google Scholar 

  • Dyer, O. (2005). Global ecological disaster predicted in next 50 years. British Medical Journal, 330, 809–815.

    Article  Google Scholar 

  • Fabela, P. S., Sandoval Manrique, J. C., López, R. L., & Sánchez, E. S. (2001). Using a diversity index to establish water quality in lotic systems. Ingenieria Hidraulica en Mexico, 16, 57–66.

    Google Scholar 

  • Ferenc, A., De Szalay, F. A., & Resh, V. H. (2000). Factors influencing macroinvertebrate colonization of seasonal wetlands: Responses to emergent plant cover. Freshwater Biology, 45, 1365–2427.

    Google Scholar 

  • Fjellheim, A., Boggero, A., Halvorsen, G. A., Nocentini, A. M., Rieradevall, M., Raddum, G. G., et al. (2000). Distribution of benthic invertebrates in relation to environmental factors. A study of European remote alpine lake ecosystems. Verhandlung International Verein Limnology, 27, 484–488.

    Google Scholar 

  • Fogg, G. E. (1983). The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica Marina, 26, 3–14.

    Article  CAS  Google Scholar 

  • Franquet, E., & Chessel, D. (1994). Approache statistique des composantes spatiales et temporelles de la relation faune-milieu. Sciences de la Vie, 317, 202–206.

    Google Scholar 

  • Franquet, E., Dolédec, S., & Chessel, D. (1995). Using multivariate analyses for separating spatial and temporal effects within species–environmental relationships. Hydrobiologia, 300/301, 425–431.

    Article  Google Scholar 

  • Gandouin, E., Maasri, A., Van Vliet-Lanoe, B., & Franquet, E. (2006). Chironomid (Insecta: Diptera) assemblages from a gradient of lotic and lentic waterbodies in river floodplains of france: A methodological tool for paleoecological applications. Journal of Paleolimnology, 35, 149–166.

    Article  Google Scholar 

  • Gaufin, A. R., & Tarzwell, C. M. (1954). Aquatic macroinvertebrate communities as indicators of organic pollution in Lytle, Creek. Sewage and Industrial Wastes, 28, 906–924.

    Google Scholar 

  • Harris, G. (2002). Integrated assessment and modelling: An essential way of doing science. Environmental Modelling and Software, 173, 201–207.

    Google Scholar 

  • Hart, E. A., & Lovvorn, J. R. (2005). Title patterns of macroinvertebrate abundance in inland saline wetlands: A trophic analysis. Hydrobiologia, 541, 45–54.

    Article  Google Scholar 

  • Hawkes, H. A. (1979). Invertebrates as indicators of river water quality. In A. James & L. Evision (Eds.), Biological indicators of water quality 2 (pp. 1–45). Chichester, Great Britain: Wiley.

    Google Scholar 

  • Hellawell, J. M. (1986). Biological indicators of freshwater pollution and environmental management (p. 546). London: Elsevier.

    Google Scholar 

  • Hynes, H. B. N. (1960). The biology of polluted waters (p. 202). London: Liverpool University Press.

    Google Scholar 

  • Hynynen, J., & Merilainen, J. J. (2005). Recovery from acidification in boreal lakes inferred from macroinvertebrates and subfossil chironomids. Hydrobiologia, 541, 155–173.

    Article  CAS  Google Scholar 

  • Johnson, R. K., Eriksson, L., & Wiederholm, T. (1992). Ordination of profundal zoobenthos. Water, Air and Soil Pollution, 65, 339–351.

    Article  CAS  Google Scholar 

  • Johnson, R. K., & Wiederholm, T. (1989). Classification and ordination of profundal macroinvertebrate communities in nutrient poor, oligo-mesohumic lakes in relation to environmental data. Freshwater Biology, 21, 375–386.

    Article  Google Scholar 

  • Jones, J. G., Simon, B. M., & Mitchell, R. (1983). Estimates of bacterial growth from changes in uptake rates and biomass. Applied and Environmental Microbiology, 44, 1296–1307.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Karr, J. R. (1991). Biological integrity: A long-neglected aspect of water resource management. Applied Ecology, 1, 66–84.

    Article  Google Scholar 

  • Kay, W. R., Smith, M. J., Pinder, A. M., McRae, J. M., Davies, J. A., & Halse, S. A. (1999). Patterns of distribution of macroinvertebrate families in rivers of North-western Australia. Freshwater Biology, 41, 299–316.

    Article  Google Scholar 

  • Khattabi, H., Aleya, L., & Mania, J. (2002). Natural lagooning of leachates. Journal of Water Sciences, 15, 411–419.

    CAS  Google Scholar 

  • Khattabi, H., Aleya, L., & Mania, J. (2006). Spatio-temporal evolution and characterisation of phytoplankton populations in landfill leachate treatment basins. Water, Air and Soil Pollution, 174, 107–125.

    Article  CAS  Google Scholar 

  • Kimberling, D. N., Karr, J. R., & Fore, L. (2001). Measuring human disturbance using terrestrial invertebrates in shrub-step of Eastern Washington (USA). Ecological Indicators, 1, 63–81.

    Article  Google Scholar 

  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long term composition of MSW landfill leachate. Environmental Science & Technology, 32, 297–336.

    Article  CAS  Google Scholar 

  • Lencioni, V., & Rossaro, B. (2005). Microdistribution of chironomids (Diptera: Chironomidae) in Alpine streams: An autoecological perspective. Hydrobiologia, 533, 61–76.

    Article  Google Scholar 

  • Lodge, D. M. (1985). Macrophyte–gastropod associations: Observations and experiments on macrophyte choice by gastropods. Freshwater Biology, 15, 695–708.

    Article  Google Scholar 

  • McAbendroth, L., Ramsay, P. M., Foggo, A., Rundle, S. D., & Bilton, D. T. (2005). Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos, 111, 279–290.

    Article  Google Scholar 

  • Mittelbach, G. G. (1988). Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates. Ecology, 69, 614–623.

    Article  Google Scholar 

  • Omura, M., Inamasu, T., & Ishinishi, N. (1991). Mutagenicity assays of leachate from domestic waste landfills in Japan: The establishment of a protocol for measuring levels of leachate. Bulletin of Environmental Contamination and Toxicology, 46, 561–568.

    Article  CAS  Google Scholar 

  • Pankratova, V. Y. A. (1970). Larvae and pupae of midges of subfamily Orthocladiinae (Diptera: Chironomidae=Tendipedidae) of USSR fauna. Opred faune USSR, 102, 1–343 (in Russian).

    Google Scholar 

  • Poulton, B. C., Monda, D. P., & Woodward, D. F. (1995). Relations between benthic community structure and metals concentrations in aquatic macroinvertebrates: Clark Fork River, Montana. Journal of Freshwater Ecology, 10, 277–293.

    CAS  Google Scholar 

  • Radha, R., Tripathi, R. M., Vinod, K. A., Sathe, A. P., Khandekar, R. N., & Nambi, K. S. V. (1997). Assessment of Pb, Cd, Cu, and Zn exposures of 6- to 10-year-old children in Mumbai. Environmental Research, 80, 215–221.

    Google Scholar 

  • Rehfeldt, G., & Sächtig, W. (1991). Heavy metal accumulation by Baetis rhodani and macrobenthic community structure in running waters of the N’Hars Mountains (Lower Saxony/FRG) (Ephemeroptera: Baetidae). Entomologia Generalis, 16, 31–37.

    Google Scholar 

  • Reynolds, C. S. (1984). Phytoplankton periodicity: The interactions of forms, functions and environmental variability. Freshwater Biology, 14, 111–142.

    Article  Google Scholar 

  • Ribaudo, M. O., Hoag, D. L., Smith, M. E., & Heimlich, R. (2001). Environmental indexes and the politics of the conservation reserve program. Ecological Indicators, 1, 11–20.

    Article  Google Scholar 

  • Richardson, J. S., & Kiffney, P. M. (2000). Responses of a macroinvertebrate community from a pristine, Southern British Colombia, Canada, stream to metals in experimental mesocosms. Environmental Toxicology and Chemistry, 19, 736–743.

    Article  CAS  Google Scholar 

  • Rodier, J. (1984). L’analyse de l’eau (7th ed., p. 500). Paris: Dunod.

    Google Scholar 

  • Saether, O. A. (1975). Nearctic and palaearctic Heterotrissocladius (Diptera: Chironomidae). Bulletin-Fisheries Research Board of Canada, 193, 1–67.

    Google Scholar 

  • Schnell, Ø. A., & Aagaard, K. (1996). Chironomidae. In K. Aagaard & D. Dolmen (Eds.), Limnofauna Norvegica (pp. 112–248). Trondheim, Norway: Tapir Forlag.

    Google Scholar 

  • Schriver, P., Bogestrand, J., Jeppesen, E., & Sondergaard, M. (1995). Impact of submerged macrophytes on fish–zooplankton–phytoplankton interactions: Large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology, 33, 255–270.

    Article  Google Scholar 

  • Schwarzbauer, J., Heim, S., Brinker, S., & Littke, R. (2002). Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Research, 36, 2275–2287.

    Article  CAS  Google Scholar 

  • Seire, A., & Pall, P. (2000). Chironomids larvae (Diptera, Chironomidae) as indicators of water quality in Estonian streams. Proceedings of the Academy of Sciences and Biological Ecology, 49, 307–316.

    CAS  Google Scholar 

  • Serra-Tosio, B., & Gay, C. (1978). Les diptères Chironomidés et Chaoboridés du lac de Petichet (Isère). Trav. Lab. Hydrobiologia, 69/70, 97–105.

    Google Scholar 

  • Servia, J., Cobo, F., & Gonzalez, M. A. (2004). Effects of short-term climatic variations on fluctuating asymmetry levels in Chironomus riparius larvae at a polluted site. Hydrobiologia, 523, 137–147.

    Article  Google Scholar 

  • Sheehan, P. J., & Knight, A. W. (1985). A multilevel approach to the assessment of ecotoxicological effects in heavy metal pollution stream. Verhandlung International Verein Limnology, 22, 2364–2370.

    CAS  Google Scholar 

  • Sheehan, P. J., & Winner, R. W. (1984). Comparison of gradient studies in heavy-metal polluted streams. In P. J. Sheehan, D. R. Miller, G. C. Butler, & P. H. Bourdean (Eds.), Effect of pollutants at the ecosystem level. New York: Wiley.

    Google Scholar 

  • Simpson, K. W., Bode, R. W., & Albu, P. (1983). Keys for the genus Cricotopus adapted from Revision der Gattung Cricotopus van der Wulp und ihrer Verwandten (Diptera, Chironomidae) by Hirvenoja. Bulletins NY State Museum, 450, 1–133.

    Google Scholar 

  • Soszka, G. J. (1975). Ecological relationships between invertebrates and submerged macrophytes in the lake littoral. Ekologia Polska, 23, 393–415.

    Google Scholar 

  • Spanhoff, B., Kaschek, N., & Meyer, E. I. (2004). Laboratory investigation on community composition, emergence patterns and biomass of wood-inhabiting Chironomidae (Diptera) from a sandy lowland stream in Central Europe (Germany). Aquatic Ecology, 38, 547–560.

    Article  Google Scholar 

  • Thacker, S. B., Hoffman, A., Steinberg, K., Zack, M., & Smith, J. (1992). Effect of low-level body burdens of lead on the mental development of children: Limitations of metal-analysis in a review of longitudinal data. Archive für Environmental Health, 47, 336–347.

    Article  CAS  Google Scholar 

  • Thioulouse, J., Chessel, D., Dolédec, S., & Olivier, J. M. (1997). ADE-4: A multivariate analysis and graphical display software. Statistics and Computing, 7, 75–83.

    Article  Google Scholar 

  • USEPA. (1984). Ambient water quality criteria for ammonia. EPA 440/5-85-001, Washington, D.C., USA.

  • USEPA. (1986). Ambient water quality criteria for dissolved oxygen. US Environmental Protection Agency, Report No. EPA/PB86-208253, Washington, D.C., USA.

  • USEPA. (1998). Update of ambient water quality criteria for ammonia. EPA 822-R-98-008, Washington, D.C., USA.

  • Verneaux, V., & Aleya, L. (1998a).Spatial and temporal distribution of Chironomid larvae (Diptera: Nematocera) at the sediment-water interface in Lake Abbaye (Jura, France). Hydrobiologia, 373/374, 169–180.

    Article  Google Scholar 

  • Verneaux, V., & Aleya, L. (1998b). Bathymetric distributions of chironomid communities in ten French lakes: Implication on lake classification. Archives für Hydrobiologie, 142, 209–228.

    Google Scholar 

  • Versteeg, D. J., Belanger, S. E., & Carr, G. J. (1999). Understanding single-species and model ecosystem sensitivity: Data-based comparison. Environmental Toxicology and Chemistry, 18, 1329–1346.

    Article  CAS  Google Scholar 

  • Wiederholm, T. (1980). Use of benthos in lake monitoring. Journal Water Pollution Control, 52, 537–547.

    CAS  Google Scholar 

  • Wiederholm, T. (1983). Chironomidae of the Holarctic region. Key and diagnoses. Part 1. Larvae. Entomologia Scandinavia, 19(Suppl), 457.

    Google Scholar 

  • Wilson, R. S. (1994). Monitoring the effect of sewage effluent on the Oxford Canal using chironomid pupal exuviae. Journal of Aquatic Animal Health, 33, 171–182.

    Google Scholar 

  • Winberg, G. G. (1978). Experimental application of various systems of biological indication of water pollution. In D. I. Mount (Ed.), Proceeding of first and second USA–USSR symposium on effect of pollutants upon aquatic ecosystems (vol. I, pp. 14–149). Duluth, MN: Environmental Reseach Laboratory, US Environmental Protection Agency.

    Google Scholar 

  • Winner, R. W., Boesel, M. V., & Farrell, M. P. (1980). nsect community structure as an index of heavy metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 37, 647–655.

    Article  CAS  Google Scholar 

  • Yasuno, M., Hatakeyama, S., & Sugaya, Y. (1985). Characteristic distribution of chironomids in the river polluted with heavy metals. Verhandlung International Verein Limnology, 22, 2371–2377.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the SICTOM (Syndicat Intercommunal de Traitement des Ordures Ménagères) of Etueffont (Territoire de Belfort, France) for financial support. We also thank Dr Vernaux Valérie for help and good advices. We devote our special thanks to Dr B. Rossaro for his good comments and corrections of our contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleya Lotfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicham, K., Lotfi, A. The Dynamics of Macroinvertebrate Assemblages in Response to Environmental Change in Four Basins of the Etueffont Landfill Leachate (Belfort, France). Water Air Soil Pollut 185, 63–77 (2007). https://doi.org/10.1007/s11270-007-9426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9426-9

Keywords

Navigation