Skip to main content
Log in

Evaluation of Biodegradability and Biodegradation Kinetics for Anionic, Nonionic, and Amphoteric Surfactants

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The biodegradation kinetics of anionic (sodium laureth sulfate – SLES), amphoteric (disodium cocoamphodiacetate – DSCADA), and nonionic surfactants (polyalcohol ethoxylate – PAE) were assessed in this laboratory study. Similar degradation behavior was observed for all surfactants with only a fraction of the parent compound readily biodegradable. Biodegradation, as estimated by COD removal, was initially (i.e., within 24 h) rapid, however only 40–70% of the surfactant molecules were readily biodegradable. Intrinsic kinetic parameters were successfully quantified for the readily biodegradable component of the surfactant. Inhibition was not observed and microbial kinetics of SLES, DSCADA, and PAE degradation fit the Monod model well. Average μ-S curves were generated for each surfactant. Based on these results, complete degradation of the target surfactants using biological waste treatment would be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balson, T., & Felix, M. S. B. (1995). Biodegradability of nonionic surfactants. In D. R. Karsa (Ed.), Biodegradability of surfactants (pp. 204–229). Glasgow, UK: Blackie Academic and Professional.

    Google Scholar 

  • Bennie, D. T. (1999). Review of the environmental occurrence of alkylphenols and alkylphenol ethoxylates. Water Quality Research Journal of Canada, 34(1), 79–122.

    CAS  Google Scholar 

  • Bokern, M., & Harms, H. H. (1997). Toxicity and metabolism of 4-n-nonylphenol in cell suspension cultures of different plant species. Environmental Science and Technology, 31(7), 1849–1854.

    Article  CAS  Google Scholar 

  • Brown, S. C., Grady, C. P. L., & Tabak, H. H. (1990). Biodegradation kinetics of substituted phenolics: Demonstration of a protocol based on electrolytic respirometry. Water Research, 24(7), 853–861.

    Article  CAS  Google Scholar 

  • Chen, H., Tseng, D., & Huang, S. (2005). Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresource Technology, 96(13), 1483–1491.

    Article  CAS  Google Scholar 

  • Domsch, A. (1995). Biodegradability of amphoteric surfactants. In D. R. Karsa, & M. R. Porter (Eds.), Biodegradability of surfactants (pp. 231–243). Glasgow, UK: Blackie Academic and Professional.

    Google Scholar 

  • Garland, J. L., Roberts, M. S., Levine, L. H., & Mills, A. L. (2003). Community-level physiological profiling using an oxygen-sensitive fluorophore in a microtiter plate. Applied and Environmental Microbiology, 69(5), 2994–2998.

    Article  CAS  Google Scholar 

  • Godsey, W. K. (1997). Determination of intrinsic and extant kinetic parameters describing biodegradation of selected synthetic detergents. Dissertation, Clemson University.

  • Grady, C. P. L., Daigger, G. T., & Henry, C. L. (1980). Biological wastewater treatment. New York: Marcel Dekker.

    Google Scholar 

  • Grady, C. P. L., Dang, J. S., Harvey, D. M., Jobbagy, A., & Wang, X.-L. (1989). Determination of biodegradation kinetics through use of electrolytic respirometry. Water Science Technology, 21, 957–968.

    CAS  Google Scholar 

  • Grady, C. P. L., Smets, B. F., & Barbeau, D. S. (1996). Variability of kinetic parameter estimates: A review of possible causes and a proposed terminology. Water Research, 30, 742–748.

    Article  CAS  Google Scholar 

  • Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1992). Standard methods for the examination of water and wastewater (18th ed.). Water Environment Federation.

  • Griffiths, E. T., Hales, S. G., Russell, N. J., Watson, G. K., & White, G. F. (1986). Metabolite production during the biodegradation of the surfactant sodium dodeyltriethoxy sulphate under mixed-culture die-away conditions. Journal of General Microbiology, 132, 963–972.

    CAS  Google Scholar 

  • Hales, S. G., Dodgson, K. S., White, G. F., Jones, N., & Watson, G. S. (1982). Initial stages in the biodegradation of the surfactant sodium dodecyltriethoxy sulfate by pseudomonas sp. DES1. Applied and Environmental Microbiology, 44, 790–800.

    CAS  Google Scholar 

  • Itrich, N. R., & Federle, T. W. (2004). Effect of ethoxylate number and alkyl chain length on the pathway and kinetics of linear alcohol ethoxylate biodegradation in activated sludge. Environmental Toxicology and Chemistry, 23(12), 2790–2798.

    Article  Google Scholar 

  • Jimenez, L., Breen, A., Thomas, N., Federle, T. W., & Sayler, G. S. (1991). Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium. Applied and Environmental Microbiology, 57(5), 1566–1569.

    CAS  Google Scholar 

  • Lange, R. K. (1999). Surfactants: A practical handbook. Cincinnati: Hanser Gardner.

    Google Scholar 

  • Magbanua, B. S., Lu, Y.-T., & Grady, C. P. L. (1998). A technique for obtaining representative biokinetic parameter values from replicate sets of parameter estimates. Water Research, 32(3), 849–855.

    Article  CAS  Google Scholar 

  • Perales, J. A., Manzno, M. A., Sales, D., & Quiroga, J. (1999). Biodegradation kinetics of LAS in river water. International Biodeterioration & Biodegradation, 43(4), 155–160.

    Article  CAS  Google Scholar 

  • Raney, O. (1999). Domestic cleaning applications. In Surfactants: A practical handbook (pp. 171–202). Munich: Carl Hanser Verlag.

    Google Scholar 

  • Steber, J., & Berger, H. (1995). Biodegradability of anionic surfactants. In Biodegradability of surfactants. London: Chapman & Hall.

    Google Scholar 

  • Steber, J., & Wierich, P. (1985). Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants. Applied and Environmental Microbiology, 49(3), 530–537.

    CAS  Google Scholar 

  • Uphues, G. (1998). Chemistry of amphoteric surfactants. Fett-Lipid, 100, 490–497.

    Article  CAS  Google Scholar 

  • van Ginkel, C. G. (1996). Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation, 7, 151–164.

    Article  Google Scholar 

  • Zhang, C., Valsaraj, K. T., Constant, W. D., & Roy, D. (1999). Aerobic biodegradation kinetics of four anionic and nonionic surfactants at sub- and supra-critical micelle concentrations (CMCs). Water Research, 33(1), 115–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the NASA ALS NSCORT. We would like to thank Jay Garland, Eric McLamore, Karen Pickering, and C.P. Leslie Grady for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybil Sharvelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharvelle, S., Lattyak, R. & Banks, M.K. Evaluation of Biodegradability and Biodegradation Kinetics for Anionic, Nonionic, and Amphoteric Surfactants. Water Air Soil Pollut 183, 177–186 (2007). https://doi.org/10.1007/s11270-007-9367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9367-3

Keywords

Navigation