Skip to main content

Advertisement

Log in

Plant Cover and Control of Diffuse Pollution from P in Olive Groves

Use of Plant Cover for Control of Agricultural Nonpoint Source Pollution from Soluble P in Ecological Olive Groves

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Plant cover modifies the physicochemical properties of the soil surface, which results in an enrichment in organic matter and a greater infiltration. So, this study was conducted to determine if its establishment in olive groves was effective, compared to conventional tillage, for the reduction in pollution by soluble phosphorus (P). Surface runoff, soluble P and Olsen P losses in sediment were analyzed in three experiment fields of ecological olive trees in the province of Córdoba (Spain), from 1 June 2003 to 1 June 2005. The cover system reduced the total losses of both variables in the three plots (between 7.6% and 36.5% the dissolved P loss and between 16.3% and 56.4% that of the runoff), with a certain parallelism being observed in the time distribution of the losses in both soil management systems, with significant Spearman coefficients of correlation, ranging between 0.60 and 0.98. Over half the losses of the runoff and dissolved P were produced in two or three events for the two management systems. The establishment of plant cover altered the relative composition in the Olsen P loss (raising the proportion of soluble P) and usually increased the dissolved P rate. Finally, and although it is a positive technique and highly recommendable in the area’s olive groves, it was not completely effective in controlling water pollution in relation to the soluble P concentration, since this was over 0.11 mg l−1 in all the cases with a cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

TDP:

total dissolved P

DRP:

dissolved reactive P (RP<0.45 μm)

CT:

conventional tillage

PC:

plant cover

CV:

coefficient of variation

References

  • Agrela, F. (2003). Evaluación manual y automatizada de la cubierta de restos de cosecha en sistemas de Agricultura de Conservación. Tesis Doctoral, Departamento de Ingeniería Rural, Universidad de Córdoba.

  • Angle, J. S., McClung, G., McIntosh, M. C., Thomas, P. M., & Wolf, D. C. (1984). Nutrient losses in runoff from conventional and no-till corn watersheds. Journal of Environmental Quality, 13, 431–435.

    Google Scholar 

  • Australia and New Zealand Environment and Conservation Council (2000). Australian and New Zealand guidelines for fresh and marine water quality (National Water Quality Management Strategy Paper 4). Canberra, ACT: ANZECC.

  • Bremner, J. M. (1965). Inorganic forms of nitrogen. In C. A. Black, et al. (Eds.), Methods of soil analysis, Part 2. Agronomy, 9, 1179–1237. Madison, WI: American Society of Agronomy, Inc.

  • Carignan, R., & Kalff, J. (1980). Phosphorus sources for aquatic weeds: Water or sediments. Science, 207, 987–989.

    Article  CAS  Google Scholar 

  • Catt, J. A., Howse, K. R., Farina, R., Brockie, D., Todd, A., Chambers, B. J., et al. (1998). Phosphorus losses from arable land. Soil Use and Management, 14, 168–174.

    Article  Google Scholar 

  • Correll, D. L., Jordan, T., & Weller, D. E. (1999). Effects of precipitation and air temperature on phosphorus fluxes from Rhode river watersheds. Journal of Environmental Quality, 28, 144–154.

    CAS  Google Scholar 

  • Daniel, T. C., Sharpley, A. N., Edwards, D. R., Wedepohl, R., & Lemunyon, J. L. (1994). Minimizing surface water eutrophication from agriculture by phosphorus management. Journal of Soil and Water Conservation, 49(Suppl. 2), 30–38.

    Google Scholar 

  • Davenport, T. E. (1994). EPA’s perspective – You need to protect water quality. Journal of Soil and Water Conservation, (Spec. Suppl). 49(2), 14–15.

    Google Scholar 

  • Daverede, I. C., Kravchenko, A. N., Hoeft, R. G., Nafziger, E. D., Bullock, D. G., & Warren, J. J. (2003). Phosphorus runoff: Effect of tillage and soil phosphorus levels. Journal of Environmental Quality, 32, 1436–1444.

    CAS  Google Scholar 

  • Díaz, I. (2002). Caracterización de la liberación de fosfatos en suelos representativos del área mediterránea. Trabajo Profesional de Fin de Carrera, Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba.

  • Dillaha, T. A., Reneau, R. B., Mostaghimi, S., & Lee, D. (1989). Vegetative filter strips for agricultural nonpoint source pollution control. Transactions of the ASAE, 32(2), 513–519.

    Google Scholar 

  • Douglas, C. L., King, K. A., & Zuzel, J. F. (1998). Nitrogen and phosphorus in surface runoff and sediment from a wheat–pea rotation in Northeastern Oregon. Journal of Environmental Quality, 27, 1170–1177.

    CAS  Google Scholar 

  • European Environment Agency (1998). Europe’s environment: The second assessment. Copenhagen, Denmark: European Environment Agency.

    Google Scholar 

  • Fernández-Escobar, R. (2004). Fertilización. In D. Barranco, R. Fernández-Escobar, & L. Rallo (Eds.), El cutivo del olivo. Madrid: Mundi-Prensa.

    Google Scholar 

  • Francia, J. R., Martínez, A., & Ruiz, S. (2000). Erosión en suelos de olivar en fuertes pendientes. Comportamiento de distintos manejos de suelo. Edafología, 7, 147–155.

    Google Scholar 

  • Giráldez, J. V. (1998). Efecto de los sistemas de laboreo sobre las propiedades físicas del suelo. In L. García & P. González (Eds.), Agricultura de Conservación. Fundamentos agronómicos, medioambientales y económicos. (pp 13–40). Córdoba: Asociación Española de Laboreo de Conservación.

    Google Scholar 

  • González, P., & Ordóñez, R. (1998). Efecto del laboreo sobre la materia orgánica y la fertilidad de los suelos. In L. García & P. González (Eds.), Agricultura de Conservación. Fundamentos agronómicos, medioambientales y económicos. (pp 41–50). Córdoba: Asociación Española de Laboreo de Conservación.

    Google Scholar 

  • Hart, M. R., Quin, B. F., & Nguyen, M. L. (2004). Phosphorus runoff from agricultural land and direct fertilizer effects: A review. Journal of Environmental Quality, 33, 1954–1972.

    CAS  Google Scholar 

  • Haygarth, P. M., & Jarvis, S. C. (1997). Soil derived phosphorus in surface runoff from grazed grassland lisymeters. Water Research, 31, 140–148.

    Article  CAS  Google Scholar 

  • Haygarth, P. M., Hepworth, L., & Jarvis, S. C. (1998). Form of phosphorus transfer in hydrological pathways from soil under grazed grassland. European Journal of Soil Science, 49, 65–72.

    Article  Google Scholar 

  • Klausner, S. D., Zwerman, P. J., & Ellis, D. F. (1974). Surface runoff losses of soluble nitrogen and phosphorus under two systems of soil management. Journal of Environmental Quality, 3, 42–46.

    CAS  Google Scholar 

  • Langdale, G. W., Leonard, R. A., & Thomas, A. W. (1985). Conservation practice effects on phosphorus losses from southern Piedmont watersheds. Journal of Soil and Water Conservation, 40, 157–160.

    Google Scholar 

  • McDowell, R. W., Drewry, J. J., Paton, R. J., Carey, P. L., Monaghan, R. M., & Condron, L. M. (2003). Influence of soil treading on sediment and phosphorus losses in overland flow. Australian Journal of Soil Research, 41, 949–961.

    Article  CAS  Google Scholar 

  • Ministry for the Environment (2001). Managing waterways on farms: A guide to sustainable water and riparian management in rural New Zealand. Wellington, New Zealand: MfE.

    Google Scholar 

  • Nash, D., Hannah, M., Halliwell, D., & Murdoch, C. (2000). Factors affecting phosphorus export from a pasture-based grazing system. Journal of Environmental Quality, 29, 1160–1166.

    CAS  Google Scholar 

  • Nash, D., & Murdoch, C. (1997). Phosphorus in runoff from a fertile dairy pasture. Australian Journal of Soil Research, 35, 419–429.

    Article  Google Scholar 

  • Nguyen, M. L., Cooper, A. B., & Thorrold, B. S. (1999). Phosphorus losses in surface runoff from field plots receiving soluble and slow-release phosphate fertilisers. Hamilton, New Zealand: NIWA.

    Google Scholar 

  • Olness, A., Rhoades, E. D., Smith, S. J., & Menzel, R. G. (1980). Fertilizer nutrient losses from rangeland watersheds in central Oklahoma. Journal of Environmental Quality, 9, 81–86.

    CAS  Google Scholar 

  • Page, A. L. (1982). Methods of soil analysis. Part II. Chemical and microbiological properties (2nd edn.). Agronomy No. 9. Madison: ASA, SSSA.

  • Peters, R. H. (1981). Phosphorus availability in Lake Memphremagog and its tributaries. Limnology and Oceanography, 26, 1150–1161.

    Article  CAS  Google Scholar 

  • Pierzynski, G. M. (Ed.) (2000). Methods of phosphorus analysis for soils, sediments, residuals and waters. Southern Cooperative Series Bulletin no. 396. Raleigh, NC: North Carolina State University.

  • Ramos, M. C., & Martínez-Casasnovas, J. A. (2004). Nutrient losses from a vineyard soil in Northeastern Spain caused by an extraordinary rainfall event. Catena, 55, 79–90.

    Article  CAS  Google Scholar 

  • Ramos, M. C., & Porta, J. (1994). Rainfall intensity and erosive potentiality in the NE Spain Mediterranean area: Results on sustainability of vineyards. Il Nuovo Cimento, 17, 291–299.

    Google Scholar 

  • Rodríguez-Lizana, A., Ordóñez, R., Espejo-Pérez, A. J., & Giráldez, J. V. (2005a). Manejo de suelo en olivar. Agricultura, 874, 384–391.

    Google Scholar 

  • Rodríguez-Lizana, A., Ordóñez, R., Espejo-Pérez, A. J., & González, P. (2005b). Nitrate pollution of runoff waters in ecological olive groves under different soil management systems. In AEAC/SV, ECAF, Diputación de Córdoba (Ed.), Congreso Internacional sobre Agricultura de Conservación, Córdoba, España.

  • Rodríguez-Lizana, A., Ordóñez, R., & González, E. J. (2004). Agricultura de Conservación en cultivos leñosos (olivar): Cubiertas vegetales. Cualidades y tipos principales. In J. Gil-Ribes, G. L. Blanco-Roldán, & A. Rodríguez-Lizana (Eds.), Técnicas de Agricultura de Conservación (Capítulo 17). Mundi-Prensa: Madrid.

  • Sande, P., Mirás, J. M., Vidal, E., & Paz, A. (2005). Formas de fósforo y su relación con la erosión en aguas superficiales bajo clima atlántico. In J. Samper & A. Paz (Eds.), VII Jornadas de investigación en la zona no saturada del suelo ZNS`05. España: La Coruña.

  • Sharpley, A. N. (1985). The selective erosion of plant nutrients in runoff. Soil Science Society of America Journal, 49, 1527–1534.

    Article  CAS  Google Scholar 

  • Sharpley, A. N., Chapra, S. C., Wedepohl, R., Sims, J. T., Daniel, T. C., & Reddy, K. R. (1994). Managing agricultural phosphorus for protection of surface waters: Issues and options. Journal of Environmental Quality, 23, 437–451.

    CAS  Google Scholar 

  • Sharpley, A. N., Foy, R. H., & Withers, P. J. A. (2000). Practical and innovative measures for the control of agricultural phosphorus losses to water: An overview. Journal of Environmental Quality, 29, 1–9.

    Article  CAS  Google Scholar 

  • Sharpley, A. N., Menzel, R. G., Smith, S. J., Rhoades, E. D., & Olness, A. E. (1981). The sorption of soluble phosphorus by soil material during transport in runoff from cropped and grassland watersheds. Journal of Environmental Quality, 10, 211–215.

    CAS  Google Scholar 

  • Sharpley, A. N., & Smith, S. J. (1991). Effects of cover crops on surface water quality. In W. L. Hargrove (Ed.), Cover crops for clean water. Ankeny, IA: Soil and Water Conservation Society.

    Google Scholar 

  • Sharpley, A. N., Smith, S. J., & Naney, J. W. (1987). The environmental impact of agricultural nitrogen and phosphorus use. Journal of Agricultural and Food Chemistry, 36, 812–817.

    Article  Google Scholar 

  • Sharpley, A. N., & Syers, J. K. (1983). Transport of phosphorus in surface runoff as influenced by liquid and solid fertilizer phosphate addition. Water, Soil and Air Pollution, 19, 321–326.

    CAS  Google Scholar 

  • SSS (1999). Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. Washington, DC: USDA-NRCS.

  • Steel, R., & Torrie, J. (1980). Principles and procedures of statistics. McGraw-Hill: New York, NY.

    Google Scholar 

  • Torbert, H. A., Potter, K. N., & Morrison, J. E. (1996). Management effects on fertilizer N and P losses in runoff on Vertisols. Transactions of the ASAE, 39(1), 161–166.

    Google Scholar 

  • United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) (1999). A procedure to estimate response of aquatic systems to changes in phosphorus and nitrogen inputs. Portland, OR: NRCS National Water and Climate Center.

  • United States Environmental Protection Agency (USEPA) (1997). Nonpoint source pollution: the nation’s largest water quality problem (Pointer No. 1 EPA 841-F-96-004A). Washington, DC: USEPA.

  • Urbano, P. (2002). Fitotecnia. Ingeniería de la producción vegetal. Madrid: Mundi-Prensa.

    Google Scholar 

  • Vaithiyanathan, P., & Correll, D. L. (1992). The Rhode river watershed: Phosphorus distribution and export in forest and agricultural soils. Journal of Environmental Quality, 21, 280–288.

    CAS  Google Scholar 

  • Withers, P. J. A., Clay, S. D., & Breeze, V. G. (2001). Phosphorus transfer in runoff following application of fertilizer, manure and sewage sludge. Journal of Environmental Quality, 30, 180–188.

    CAS  Google Scholar 

  • Yoo, K. H. J., Touchton, J. T., & Walker, R. H. (1988). Runoff, sediment and nutrient losses from various tillage systems of cotton. Soil and Tillage Research, 12, 13–24.

    Article  Google Scholar 

  • Zuzel, J. F., Allmaras, R. R., & Greenwalt, R. (1993). Temporal distribution of runoff and soil erosion at a site in Northeastern Oregon. Journal of Soil and Water Conservation, 48, 373–378.

    Google Scholar 

Download references

Acknowledgments

Our thanks to the Specific Agreement between the Department of Agriculture and Fisheries of the Autonomous Government of Andalusia and the AEAC/SV’s “Development of a Follow-up Programme for the Evaluation of the Application of Measures to Promote Plant Covers in Andalusian Olive Groves”, which financed the studies, as well as to the agreement CC06-132 between IFAPA and the AEAC/SV´s; to the scientific committee of the Agreement; to the laboratory staff for their help in performing the analyses, and to the owners of the different land plots for permitting the carrying out of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rodríguez-Lizana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Lizana, A., Ordóñez, R., Espejo-Pérez, A.J. et al. Plant Cover and Control of Diffuse Pollution from P in Olive Groves. Water Air Soil Pollut 181, 17–34 (2007). https://doi.org/10.1007/s11270-006-9273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9273-0

Keywords

Navigation