Skip to main content
Log in

On the Different Sensitivity of White Clover Clones to Ozone: Physiological and Biochemical Parameters in a Multivariate Approach

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This study analyses the physiological and biochemical basis of chronic ozone exposure (60 ppb for 56 days, 5 h day−1) on NC-S (sensitive) and NC-R (resistant) white clover clones. Analyses were performed after 0, 14, 28 and 56 days of fumigation which corresponded to AOT40 s of 0, 1400, 2800 and 5600 ppb.h, respectively. NC-S exhibited foliar injury and had a decreased content of photosynthetic pigments, while peroxidized lipids and solute leakage increased, indicating that the plants were subjected to membrane damage. The multivariate approach identified five groups. The NC-R group, with the exception of samples at 0 days of exposure and treated for the longest time period (and thus at the highest dose), and NC-S controls after 28 and 56 days were associated with photosynthetic pigments variables. Ascorbate peroxidase was twinned with NC-R treated at the highest dose. Guaiacol peroxidase and solute leakage was mildly linked with NC-S following ozone treatment for 56 days (AOT40 = 5600 ppb.h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, C. P.: 2003, ‘Source-sink balance and carbon allocation below ground in plants exposed to ozone’, New Phytol. 157, 213–228.

    Article  Google Scholar 

  • Apel, K. and Hirt, H.: 2004, ‘Reactive oxygen species: Oxidative stress and signal transduction’, Annu. Rev. Plant Biol. 55, 373–399.

    Article  PubMed  Google Scholar 

  • Baker, C. and Orlandi, E.: 1995, ‘Active oxygen in plant pathogenesis’, Annu. Rev. Phytopath. 33, 299–321.

    Article  Google Scholar 

  • Brown, S., Houghton, J. and Hendry, G.: 1991, ‘Chlorophyll breakdown’, in H. Scheer (ed), Chlorophylls, CRC Press, Boca Raton, USA, pp. 465–489.

    Google Scholar 

  • Correia, C., Torres-Pereira, M. and Torres-Pereira, J.: 1999, ‘Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation’, Environ. Pollut. 104, 383–388.

    Article  Google Scholar 

  • de Leeuw, F. A. A. M. and van Zantvoort, E. D. G.: 1997, ‘Mapping of exceedances of ozone critical levels for crops and forest trees in the Netherlands: Preliminary results’, Environ. Pollut. 96, 89–98.

    Article  PubMed  Google Scholar 

  • Derksen, D. A., Lafond, G. P., Thomas, G., Loeppky, H. A. and Swanton, C. J.: 1993, ‘Impact of agronomic practices on weed communities: Tillage systems’, Weed Sci. 41, 409–417.

    Google Scholar 

  • Elvira, S., Alonso, R., Castillo, F. and Gimeno, B.: 1998, ‘On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure’, New Phytol. 138, 419–432.

    Article  Google Scholar 

  • Grimmig, B., Gonzalez-Perez, M. N., Leubner-Metzger, G., Vögeli-Lange, R., Meins, F. Jr., Hain, R., Penuelas, J., Heidenreich, B., Langebartels, C., Ernst, D. and Sandermann, H. Jr.: 2003, ‘Ozone-induced gene expression occurs via ethylene-dependent and -indipendent signalling’, Plant Mol. Biol. 51, 599–607.

    Article  PubMed  Google Scholar 

  • Harmens, H., Mills, G., Hayes, F. and Williams, P.: 2004, Air Pollution and Vegetation UN/ECE ICP-Vegetation Annual Report 2003/2004. Centre for Ecology & Hydrology, Bangor, UK, 48 pp.

  • Heagle, A. S., McLaughlin, M. R., Miller, J. E. and Joyner, R. L.: 1992, ‘Response of two white clover clones to peanut stunt virus and ozone’, Phytopathology 82, 254–258.

    Google Scholar 

  • Heagle, A. S., Miller, J. E. and Sherril, D. E.: 1994, ‘A white clover system to estimate effects of tropospheric ozone on plants’, J. Environ. Qual. 23, 613–621.

    Google Scholar 

  • Heagle, A. S., Miller, J. E., Sherrill, D. E. and Rawlings, J. O.: 1993, ‘Effects of ozone and carbon dioxide mixtures on two clones of white clover’, New Phytol. 123, 751–762.

    Google Scholar 

  • Heath, R. L.: 1994, ‘Alterations of plant metabolism by ozone exposure’, in R. G. Alscher and A. R. Wellburn (eds), Plant Responses to the Gaseous Environment, Chapmann & Hall, London, UK, pp. 121–145.

    Google Scholar 

  • Hofmann, R. W., Campbell, B. D., Fountain, D. W., Jordan, B. R., Greer, D. H., Hunt, D. Y. and Hunt, C. L.: 2001, ‘Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.)’, Plant, Cell Env. 24, 917–927.

    Google Scholar 

  • Kangasjärvi, J., Talvinen, J., Utriainen, M. and Karjalainen, R.: 1994, ‘Plant defence system induced by ozone’, Plant, Cell Environ. 17, 783–794.

    Google Scholar 

  • Kollner, B. and Krause, G.: 2002, ‘Assessment of the response of the NC-S/NC-R clover clone system to ambient ozone levels at the Ruhr Valley’, Water, Air Soil Pollut. 137, 63–79.

    Google Scholar 

  • Kyparissis, A., Petropouluo, Y. and Manetas, Y.: 1995, ‘Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: Avoidance of photoinhibitory damage through decreased chlorophyll contents’, J. Exp. Bot. 46, 1825–1831.

    Google Scholar 

  • Langebartels, C., Wohlgemuth, H., Kschieschan, S., Grun, S. and Sandermann, H. Jr.: 2002, ‘Oxidative burst and cell death in ozone-exposed plants’, Plant Physiol. Biochem. 40, 567–575.

    Article  Google Scholar 

  • Lee, E. H.: 2000, ‘Early detection, mechanisms of tolerance, and amelioration of ozone stress in crop plants’, in S. B. Agrawal and M. Agrawal (eds), Environmental Pollution and Plant Responses, CRC Press, Boca Raton, USA, pp. 203–222.

    Google Scholar 

  • Levitt, J.: 1980, Responses of Plants to Environmental Stresses, Academic Press, New York, USA, 230 pp.

    Google Scholar 

  • Lichtenthaler, H.: 1987, ‘Chlorophylls and caroteinoids: pigments of photosynthetic biomembranes’, in R. Douce and L. Packer (eds), Methods in Enzymology, Academic Press, New York, USA, 148, pp. 350–382.

    Google Scholar 

  • Lütz, C., Anegg, S., Gerant, D., Alaoui-Sossè, B., Gèrard, J. and Dizengremel, P.: 2000, ‘Beech trees exposed to high CO2 and to simulated summer ozone levels: Effects on photosynthesis, chloroplast components and leaf enzyme activity’, Physiol. Plant. 109, 252–259.

    Google Scholar 

  • Maier-Maecker, U.: 1998, ‘Predisposition of trees to drought stress by ozone’, Tree Physiol. 19, 71–78.

    Google Scholar 

  • Manes, F., De Santis, F., Giannini, M. A., Vazzana, C., Capogna, F. and Allegrini, I.: 2003, ‘Integrated ambient ozone evaluation by passive samplers and clover biomonitoring mini-stations,’ Sci. Total Environ. 308, 133–141.

    Article  PubMed  Google Scholar 

  • Mehdy, M.: 1994, ‘Active oxygen species in plant defense against pathogens’, Plant Physiol. 105, 442–467.

    Google Scholar 

  • Mikkelsen, T. N., Dodel, B. and Lütz, C.: 1995, ‘Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone’, Environ. Pollut. 87, 197–205.

    Article  PubMed  Google Scholar 

  • Musselman, R. C. and Massman, W. J.: 1999, ‘Ozone flux to vegetation and its relationship to plant response and ambient air quality standards’, Atmos. Env. 33, 65–73.

    Article  Google Scholar 

  • Nali, C., Crocicchi, L. and Lorenzini, G.: 2004a, ‘Plants indicators of urban pollution (ozone and trace elements) in Pisa, Italy’, J. Environ. Monit. 6, 636–645.

    Article  Google Scholar 

  • Nali, C., Paoletti, E., Marabottini, R., Della Rocca, G., Lorenzini, G., Paolacci, A. R., Ciaffi, M. and Badiani, M.: 2004a, ‘Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species’, Atmos. Environ. 38, 2247–2257.

    Article  Google Scholar 

  • Noctor, G. and Foyer, C.: 1998, ‘Ascorbate and glutathione: Keeping active oxygen under control’, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279.

    Article  PubMed  Google Scholar 

  • Noormets, A., Sôber, A., Pell, E. J., Dickson, R. E., Podila, G. K., Sôber, J., Isebrands, J. G. and Karnosky, D. F.: 2001, ‘Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3’, Plant, Cell Environ. 24, 327–336.

    Google Scholar 

  • Pallett, K. E. and Joung, A. J.: 1993, ‘Carotenoids’, in R. G. Alsher and J. L. Hess (eds), Antioxidants in Higher Plants, CRC Press, Boca Raton, USA, pp. 59–89.

    Google Scholar 

  • Podani, J.: 1994, Multivariate Data Analysis in Ecology and Systematic: A Methodological Guide to the SYN-TAX 5.0 Package. SPB Academic Publishing, The Hague, The Netherlands, 316 pp.

    Google Scholar 

  • Ranieri, A., D’Urso, G., Nali, C., Lorenzini, G. and Soldatini, G. F.: 1996, ‘Ozone stimulates apoplastic antioxidant systems in pumpkin leaves’, Physiol. Plant. 97, 381–387.

    Article  Google Scholar 

  • Rao, C. R.: 1973, Linear Statistic Inference. Wiley, New York, USA, 260 pp.

    Google Scholar 

  • Reich, P. B.: 1987, ‘Quantifying plant response to ozone: A unifying theory’, Tree Physiol. 3, 63–91.

    PubMed  Google Scholar 

  • Scebba, F., Sebastiani, L. and Vitagliano, C.: 1998, ‘Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimatation’, Physiol. Plant. 104, 747–752.

    Article  Google Scholar 

  • Scebba, F., Soldatini, G. F. and Ranieri, A.: 2003, ‘Ozone differentially affects physiological and biochemical responses of two clover species: Trifolium repens and Trifolium pratense’, Environ. Poll. 123, 209–216.

    Article  Google Scholar 

  • Schraudner, M., Moeder, W., Wiese, C., Van Camp, W., Inze, D., Langebartels, C. and Sandermann, H.: 1998, ‘Ozone-induced oxidative burst in the ozone biomonitor, tobacco Bel W3’, Plant J. 16, 235–245.

    Article  Google Scholar 

  • Senser, M., Kloos, M. and Lutz, C.: 1990, ‘Influence of soil substrate and ozone plus acid mist on the pigment content and composition of needles from young Norway spruce trees’, Environ. Poll. 64, 295–312.

    Article  Google Scholar 

  • Siefermann-Harms, D.: 1988, ‘High-performance liquid chromatography of chloroplast pigments: one step separation of carotene and xanthophyll isomers, chlorophylls and pheophytins’, J. Chromatogr. 448, 411–416.

    Article  Google Scholar 

  • Somersalo, S., Mäkelä, P., Rajala, A., Nevo, E. and Peltonen-Sainio, P.: 1998, ‘Morpho-physiological traits characterizing environmental adaptation of Avena barbata’, Euphytica 99, 213–220.

    Article  Google Scholar 

  • Tang, Y., Chevone, B. I. and Hess, J. L.: 1999, ‘Ozone-responsive proteins in a tolerant and sensitive clone of white clover (Trifolium repens)’, Environ. Poll. 104, 89–98.

    Article  Google Scholar 

  • Thordal-Christensen, H., Zang, Z., Wie, Y. and Collinge, D.: 1997, ‘Subcellular localization of H2O2 in plant. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction’, Plant J. 11, 1187–1194.

    Article  Google Scholar 

  • Tingey, D. T. and Taylor, G. E.: 1982, Variation in plant response to ozone: A conceptual model of physiological events, in M. H. Unsworth and D. P. Ormrod (eds), Effects of Gaseous Air Pollution in Agriculture and Horticulture, Butterworth Scientific, London, UK pp. 113–138.

    Google Scholar 

  • von Caemmerer, S. and Farquhar, G. D.: 1981, ‘Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves’, Planta 153, 376–387.

    Article  Google Scholar 

  • Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., Weigel, H., Overmyer, K., Kangsjarvi, J., Sandermann, H. and Langebartels, C.: 2002, ‘Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone’, Plant, Cell Environ. 25, 717–726.

    Google Scholar 

  • Wojtaszek, P.: 1997, ‘Oxidative burst: An early plant response to pathogen infection’, Biochem. J. 322, 681–692.

    PubMed  Google Scholar 

  • Wu, Y. and von Tiedemann, A.: 2002, ‘Evidence for oxidative stress involved in physiological leaf spot formation in winter and spring barley’, Biochem. Cell Biol. 92, 145–155.

    Google Scholar 

  • Zar, J. H.: 1984, Biostatistical Analysis. Prentice Hall, Englewood, UK, 730 pp.

    Google Scholar 

  • Zhang, J. and Kirkham, M. B.: 1996, ‘Antioxidant responses to drought in sunflower and sorghum seedlings’, New Phytol. 132, 361–373.

    Google Scholar 

  • Zheng, Y., Shimizu, H. and Barnes, J. D.: 2002, ‘Limitations to CO2 assimilation in ozone-exposed leaves of Plantago major’, New Phytol. 155, 67–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Nali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nali, C., Pucciariello, C., Mills, G. et al. On the Different Sensitivity of White Clover Clones to Ozone: Physiological and Biochemical Parameters in a Multivariate Approach. Water Air Soil Pollut 164, 137–153 (2005). https://doi.org/10.1007/s11270-005-2717-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-2717-0

Keywords

Navigation