Skip to main content
Log in

Uncertainty and Sensitivity Analysis in Reservoir Modeling: a Monte Carlo Simulation Approach

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Water resource modelling plays a crucial role in water resources management, but it involves many inherent uncertainties. This research investigates how epistemic uncertainties affect reservoir water budgets, projecting forward over a 30 year period using Monte Carlo simulation. It encompasses long-term variations in water demand, reservoir volume, precipitation, evaporation and inflow, while also considering siltation processes, reservoir dredging, population growth, reduced water consumption, and the hydrological impacts of climate change. The research focuses on fifty reservoirs in a semi-arid region of Brazil. The findings demonstrate that some reservoirs consistently met their demands with high level reliability, even within a wide range of uncertainty. Conversely, reservoirs with morphohydric indices indicating a tendency toward water scarcity are significantly affected by input variability introduced through uncertainty analysis. An empirical model is proposed to estimate the probability of these reservoirs achieving the reference volume reliability of 90%, while considering the uncertainties of: annual average inflow, reservoir maximum volume and annual demand. Sensitivity analysis reveals that reservoir inflow and demand are the two most influential variables affecting a reservoirs’ ability to meet its demand. For over exploited reservoirs, variations in these variables strongly impact the volume reliability. This research provides a valuable tool for estimating the likelihood of reaching a 90% volume reliability, while taking into account the inherent uncertainties in the modeling process. Additionally, it identifies key variables that have the most influence on the reservoirs’ ability to meet its demand. Notably, this study conducts uncertainty and sensitivity analyses in the context of physical and hydrological reservoir features for a large number of reservoirs, adding novelty to the research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Download references

Acknowledgements

The first author would like to acknowledge the Federal University of Rio Grande do Norte, Brazil, for granting the sabbatical leave and the School of Civil Engineering, University of Leeds, UK for hosting her during this study period. We are grateful for ANA and SEMARH for providing part of the data for this research. Thanks also due to Stephanie Trigg for assistance in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelena Gonçalves Maia.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, A.G., Camargo-Valero, M.A., Trigg, M.A. et al. Uncertainty and Sensitivity Analysis in Reservoir Modeling: a Monte Carlo Simulation Approach. Water Resour Manage 38, 2835–2850 (2024). https://doi.org/10.1007/s11269-024-03794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-024-03794-z

Keywords

Navigation