Skip to main content
Log in

Comparison of Frequency Calculation Methods for Precipitation Series Containing Zero Values

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The Muskingum-based (MK-based) distributions and their probability weighted moments (PWMs) have been used for frequency calculation of hydrological data that contain zero values. However, the performance of different MK-based distributions have not been compared and evaluated. Moreover, the partial L-moments (PLMs), which are used for analyzing censored samples, have not been used for frequency calculation of such hydrological data. To obtain the most effective method, this study compares and evaluates the performance of four MK-based distributions by fitting 64 monthly precipitation series and using the ordinary least square (OLS) criterion, Akaike information criterion (AIC), residual square sum criterion (RSS), and the Quasi-optimal Deterministic coefficient (QD). The distributions include ​exponential distribution combines with Dirac delta function (M-like), two-parameter gamma distribution (GA2) combines with Dirac delta function (DGA2), two-parameter generalized Pareto distribution combines with Dirac delta function (DGP2), and two-parameter Weibull distribution (WB2) combines with Dirac delta function (DWB2). The applicability of PLMs were also tested and PLMs of four traditional distributions, including GA2, WB2, generalized extreme value distribution (GEV) and three-parameter generalized Pareto distribution (GP3) were used in application. Results showed that the PLMs are feasible for frequency calculation of hydrological data with zeros. The DGP2 and GP3 are superior to the other MK-based distributions and traditional distributions, respectively. The DGP2 distribution is the optimal choice in most cases and is more universal than the other distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4

Similar content being viewed by others

Availability of Data and Material

Some or all data, models, or code generated or used in the study are available from the corresponding author by request.

Code Availability

Some or all code generated or used in the study are available from the corresponding author by request.

References

  • Azhdari Z, Bazrafshan O, Zamani H, Shekari M, Singh VP (2021) Hydro-meteorological drought risk assessment using linear and nonlinear multivariate methods. Phys Chem Earth 123:103046

  • Bhattarai KP (2004) Partial L-moments for the analysis of censored flood samples. Hydrolog Sci J 49(5):855–868

  • Bonaccorso B, Peres D, Castano A, Cancelliere A (2015) SPI-Based Probabilistic Analysis of Drought Areal Extent in Sicily. Water Resour Manag 29(2):459–470

    Article  Google Scholar 

  • Deng S, Chen T, Yang N, Qu L, Li M, Chen D (2018) Spatial and temporal distribution of rainfall and drought characteristics across the Pearl River basin. Sci Total Environ 619–620:28–41

    Article  Google Scholar 

  • Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resour Res 15(5):1049–1054

    Article  Google Scholar 

  • Hamed K, Rao AR (1999) Flood frequency analysis. Taylor & Francis Inc, Bosa Roca, United States

    Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B (Methodological) 52(2):105–124

  • Jennings ME, Benson MA (1969) Frequency curves for annual flood series with some zero events or incomplete data. Water Resour Res 5(1):276–280

    Article  Google Scholar 

  • Jeon J, Kim Y, Kim Y (2011) Expected probability weighted moment estimator for censored flood data. Adv Water Resour 34(8):933–945

    Article  Google Scholar 

  • Li L, Yao N, Liu DL, Song S, Lin H, Chen X, Li Y (2019) Historical and future projected frequency of extreme precipitation indicators using the optimized cumulative distribution functions in China. J Hydrol 579:124170

  • Moisello U (2007) On the use of partial probability weighted moments in the analysis of hydrological extremes. Hydrol Process 21(10):1265–1279

    Article  Google Scholar 

  • Myronidis D, Ioannou K, Fotakis D, Dorflinger G (2018) Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water Resour Manag 32(5):1759–1776

    Article  Google Scholar 

  • Nazeri Tahroudi M, Ramezani Y, De Michele C, Mirabbasi R (2020) A new method for joint frequency analysis of modified precipitation anomaly percentage and streamflow drought index based on the conditional density of copula functions. Water Resour Manag 34(13):4217–4231

    Article  Google Scholar 

  • Song X, Song S, Sun W, Mu X, Wang S, Li J, Li Y (2015) Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos Res 157:137–152

    Article  Google Scholar 

  • Stedinger JR (1987) Plotting positions for historical floods and their precision. Water Resour RES 23(4):715–727

    Article  Google Scholar 

  • Stedinger JR (1993) Frequency analysis of extreme events. Handb Hydrol 18

  • Strupczewski WG, Weglarczyk S, Singh VP (2003) Impulse response of the kinematic diffusion model as a probability distribution of hydrologic samples with zero values. J Hydrol 3(270):328–351

    Article  Google Scholar 

  • Sun W, Mu X, Song X, Wu D, Cheng A, Qiu B (2016) Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos Res 168(Feb.):33–48

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2013) Global warming and changes in drought. Nat Clim Change 4(1):17–22

    Article  Google Scholar 

  • Wang QJ (1990) Estimation of the GEV distribution from censored samples by method of partial probability weighted moments. J Hydrol 120(1–4):103–114

    Article  Google Scholar 

  • Wang QJ (1996) Using partial probability weighted moments to fit the extreme value distributions to censored samples. Water Resour Res 32(6):1767–1771

    Article  Google Scholar 

  • Wang SX, Singh V (1995) Frequency estimation for hydrological samples with zero values. J Water Res Plan Man 121(1):98–108

    Article  Google Scholar 

  • Weglarczyk S, Strupczewski WG, Singh VP (2005) Three-parameter discontinuous distributions for hydrological samples with zero values. Hydrol Process 19(15):2899–2914

    Article  Google Scholar 

  • Wei T, Song SB (2019) Probability weighted moments-based parameter estimation for kinematic diffusion and muskingum-based distributions. J Hydrol Eng 12(24):4019054

    Article  Google Scholar 

  • Woo M, Wu K (1989) Fitting annual floods with zero-flows. Can Water Resour J 14(2):10–16

    Article  Google Scholar 

  • Wu CL, Chau KW (2013) Prediction of rainfall time series using modular soft computing methods. Eng Appl ArtifF Intel 26(3):997–1007

    Article  Google Scholar 

  • Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389(1):146–167

    Article  Google Scholar 

  • Zakaria ZA, Shabri A, Ahmad UN (2012) Estimation of the generalized logistic distribution of extreme events using partial L-moments. Hydrolog Sci J 57(3):424–432

    Article  Google Scholar 

  • Zakaria ZA, Shabri A, Nadiah Ahmad U (2011) Estimation of generalized pareto distribution from censored flood samples using partial L-moments. J Math Res 3(1)

  • Zhang D, Han D, Song X (2020) Impacts of the sanmenxia dam on the interaction between surface water and groundwater in the lower weihe river of yellow river watershed. Water-SuiI 12(6):1671

    Google Scholar 

  • Zhang T, Su X, Feng K (2021) The development of a novel nonstationary meteorological and hydrological drought index using the climatic and anthropogenic indices as covariates. Sci Total Environ 786:147385

  • Zhao C, Brissette F, Chen J, Martel J (2020) Frequency change of future extreme summer meteorological and hydrological droughts over North America. J Hydrol 584:124316

Download references

Acknowledgements

We are grateful for the support received as part of the projects funded by the National Natural Science Foundation of China (Grant No. 52079110). Additionally, we would like to extend sincere appreciation to the editor and anonymous reviewers for their constructive comments, which help to improve the quality of the manuscript substantially.

Funding

The present study is supported by the National Natural Science Foundation of China (Grant No. 52079110).

Author information

Authors and Affiliations

Authors

Contributions

Ting Wei: Data analysis, Calculation, Writing, Editing and Review. Songbai Song: Conceptualization, Methodology, Funding acquisition. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting Wei.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interest

The authors declare that they have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Pdfs of GA2, GP2, WB2, GEV and GP3 Distributions

The pdf of GA2 distribution is given by

$$f\left( x \right) = \frac{1}{{{a^b}\Gamma \left( b \right)}}{x^{b - 1}}{e^{ - \frac{x}{a}}}$$
(23)

where a and b are the scale and shape parameters of GA2, respectively; \(\Gamma \left( b \right)\) is gamma function.

The pdf of GP2 distribution is given by

$$f\left( x \right) = \frac{1}{b}{\left( {1 - \frac{a}{b}x} \right)^{1/a - 1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} ;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} a \ne 0$$
(24)

where a and b are the scale parameter and shape parameter of GP2 distribution, respectively.

The pdf of WB2 distribution is given by

$$f\left( x \right) = \frac{a}{b}{\left( \frac{x}{b} \right)^{a - 1}}\exp {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ { - {{\left( \frac{x}{b} \right)}^a}} \right]$$
(25)

where a and b are the scale parameter and shape parameter of WB2 distribution, respectively.

The distribution function of GP3 distribution is given by

$$F\left( x \right) = 1 - {\left[ {1 - \frac{k}{\alpha }\left( {x - \xi } \right)} \right]^{1/k}}$$
(26)

where ξ, α, and k are the location, scale and shape parameters of the GP3 distribution, respectively.

The pdf of GEV distribution is given by

$$f\left( x \right) = \frac{1}{\alpha }{\left[ {1 - \frac{k}{\alpha }\left( {x - \xi } \right)} \right]^{1/k - 1}}\exp \left\{ { - {{\left[ {1 - \frac{k}{\alpha }\left( {x - \xi } \right)} \right]}^{1/k}}} \right\}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} k \ne 0$$
(27)

where ξ, α, and k are the location, scale and shape parameters of the GEV distribution, respectively.

1.2 PWMs of Muskingum-based Distributions

According to the definition of PWM given by (Greenwood et al. 1979), the PWMs for the distribution shown in Eq. (2) can be written as

$$\begin{aligned}{M_{1,j,0}} &= \int\limits_0^\infty {x{{\left[ {\int\limits_0^x {\left[ {\beta \delta \left( t \right) + \left( {1 - \beta } \right){f_1}\left( t \right) \times 1(t)} \right]dt} } \right]\,}^j}} f\left( x \right)\; dx \\ & = \int\limits_0^\infty {x{{\left[ {\beta + \left( {1 - \beta } \right)\int\limits_0^x {{f_1}\left( t \right)} dt} \right]\,}^j}\left[ {\beta \delta \left( x \right) + \left( {1 - \beta } \right){f_1}\left( x \right) 1(x)} \right]} \; dx \\ &= \left( {1 - \beta } \right)\sum\limits_{i = 0}^j {C_j^i{\beta^i}{{\left( {1 - \beta } \right)}^{j - i}}\int\limits_0^\infty {x{{\left[ {\int\limits_0^x {{f_1}\left( t \right)} dt} \right]\,}^{^{j - i}}} {f_1}\left( x \right)}\; dx{\kern 1pt} } \\ & = \left( {1 - \beta } \right)\sum\limits_{i = 0}^j {C_j^i{\beta^i}{{\left( {1 - \beta } \right)}^{j - i}}{W_{1,j - i,0}}{\kern 1pt} } \end{aligned}$$
(28)

For the M-like distribution, the first two order PWMs are derived as

$${M_{1,0,0}}{\kern 1pt} {\kern 1pt} = \left( {1 - \beta } \right)\gamma$$
(29)
$${M_{1,1,0}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left( {1 - \beta } \right)\left( {\frac{3\gamma }{4} - \frac{\beta \gamma }{4}} \right)$$
(30)

For the DGA2 distribution, the first three order PWMs are derived as

$${M_{1,0,0}}{\kern 1pt} {\kern 1pt} = \left( {1 - \beta } \right)ab$$
(31)
$${M_{1,1,0}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = a\left( {1 - \beta } \right)\left[ {\beta b + \left( {1 - \beta } \right)\left( {\frac{b}{2} + \frac{1}{{2B\left( {b,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} \right)} \right]$$
(32)
$${M_{1,2,0}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left( {1 - \beta } \right)\left[ {{\beta^2}ab + \beta \left( {1 - \beta } \right)a\left( {b + \frac{1}{{B\left( {b,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} \right) + {{\left( {1 - \beta } \right)}^2}a\left( {\frac{b}{3} + \frac{{\Gamma \left( {2b} \right)}}{{\Gamma \left( b \right){2^{2b - 1}}}}{I_\frac{1}{3}}\left( {b,2b} \right)} \right)} \right]$$
(33)

where \(B\left( {x,y} \right)\) is the beta function and \({I_z}\left( {x,y} \right)\) is the incomplete beta function.

For the DGP2 distribution, the first three order PWMs are derived as

$${M_{1,0,0}}{\kern 1pt} {\kern 1pt} = \frac{{b\left( {1 - \beta } \right)}}{a}\left( {1 - B\left( {1,a + 1} \right)} \right)$$
(34)
$${M_{1,1,0}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{b\left( {1 - \beta } \right)}}{a}\left[ {\beta \left( {1 - B\left( {1,a + 1} \right)} \right) + {\kern 1pt} \left( {1 - \beta } \right)\left( {\frac{1}{2} - B\left( {2,a + 1} \right)} \right)} \right]$$
(35)
$${M_{1,2,0}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{b\left( {1 - \beta } \right)}}{a}\left[ {{\beta^2}\left( {1 - B\left( {1,a + 1} \right)} \right) + 2\beta \left( {1 - \beta } \right)\left( {\frac{1}{2} - B\left( {2,a + 1} \right)} \right) + {{\left( {1 - \beta } \right)}^2}\left( {\frac{1}{3} - B\left( {3,a + 1} \right)} \right)} \right]$$
(36)

For the DWB2 distribution, the first three order PWMs are derived as:

$${M_{1,0,0}}{\kern 1pt} {\kern 1pt} = \left( {1 - \beta } \right)\frac{b}{a}\Gamma \left( \frac{1}{a} \right)$$
(37)
$${M_{1,1,0}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{b\left( {1 - \beta } \right)}}{a}\Gamma \left( \frac{1}{a} \right)\left[ {\beta + {\kern 1pt} \left( {1 - \beta } \right)\left( {1 - \frac{1}{{{2^{\left( {{1 \mathord{\left/ {\vphantom {1 a}} \right. \kern-\nulldelimiterspace} a} + 1} \right)}}}}} \right)} \right]$$
(38)
$${M_{1,2,0}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left( {1 - \beta } \right)\frac{b}{a}\Gamma \left( \frac{1}{a} \right)\left[ {{\beta^2} + 2\beta \left( {1 - \beta } \right)\left( {1 - \frac{1}{{{2^{\left( {{1 \mathord{\left/ {\vphantom {1 a}} \right. \kern-\nulldelimiterspace} a} + 1} \right)}}}}} \right) + {{\left( {1 - \beta } \right)}^2}\left( {1 - \frac{1}{{{2^{{1 \mathord{\left/ {\vphantom {1 a}} \right. \kern-\nulldelimiterspace} a}}}}} - \frac{1}{{{3^{\left( {{1 \mathord{\left/ {\vphantom {1 a}} \right. \kern-\nulldelimiterspace} a} + 1} \right)}}}}} \right)} \right]$$
(39)

1.3 Parameters Estimation for GA2 Distribution Using PLMs

Substituting Eq. (23) into Eq. (13), one obtains the lower censored PPWMs of GA2 distribution as

$$\begin{gathered} {{\beta ^{\prime}}_r} = \int_{x_0}^\infty {x{{\left[ {\int_0^x {f\left( t \right)dt} } \right]}^r}f\left( x \right)dx} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \int_{x_0}^\infty {x{{\left[ {\int_0^x {\frac{1}{{{a^b}\Gamma \left( b \right)}}{t^{b - 1}}{e^{ - \frac{t}{a}}}dt} } \right]}^r}\frac{1}{{{a^b}\Gamma \left( b \right)}}{x^{b - 1}}{e^{ - \frac{x}{a}}}dx} \hfill \\ \end{gathered}$$
(40)

where x0 being the lower censoring threshold.

Let \(y = {x \mathord{\left/ {\vphantom {x a}} \right. \kern-\nulldelimiterspace} a}\) and \(u = {t \mathord{\left/ {\vphantom {t a}} \right. \kern-\nulldelimiterspace} a}\), Eq. (40) can be written as

$$\begin{gathered} {{\beta {'}}_r} = \int_{\frac{{x_0}}{a}}^\infty {{{\left[ {\int_0^y {\frac{1}{{{a^b}\Gamma \left( b \right)}}{{\left( {au} \right)}^{b - 1}}{e^{ - u}}adu} } \right]}^r}\frac{1}{{{a^b}\Gamma \left( b \right)}}{{\left( {ay} \right)}^b}{e^{ - y}}ady} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \int_{\frac{{x_0}}{a}}^\infty {{{\left[ {\int_0^y {\frac{1}{\Gamma \left( b \right)}{u^{b - 1}}{e^{ - u}}du} } \right]}^r}\frac{a}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = aS{'}_r^1\left( b \right) \\ \end{gathered}$$
(41)

where

$$S{'}_r^1\left( b \right){\kern 1pt} = \int_{\frac{{x_0}}{a}}^\infty {{{\left[ {\int_0^y {\frac{1}{\Gamma \left( b \right)}{u^{b - 1}}{e^{ - u}}du} } \right]}^r}\frac{1}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy}$$
(42)

Let r = 0 and 1, one gets

$${\beta {'}_0} = aS{'}_0^1\left( b \right) = a\int_{\frac{{x_0}}{a}}^\infty {\frac{1}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy} = ab\left[ {1 - P\left( {b + 1,\frac{{x_0}}{a}} \right)} \right]$$
(43)
$$\begin{gathered} {{\beta {'}}_1} = \int_{\frac{{x_0}}{a}}^\infty {\left[ {\int_0^y {\frac{1}{\Gamma \left( b \right)}{u^{b - 1}}{e^{ - u}}du} } \right]\frac{1}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy} \\ = a\int_0^\infty {\left[ {\int_0^y {\frac{1}{\Gamma \left( b \right)}{u^{b - 1}}{e^{ - u}}du} } \right]\frac{1}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy} - a\int_0^{\frac{{x_0}}{a}} {\left[ {\int_0^y {\frac{1}{\Gamma \left( b \right)}{u^{b - 1}}{e^{ - u}}du} } \right]\frac{1}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy} {\kern 1pt} {\kern 1pt} \\ = {\kern 1pt} {\kern 1pt} a\left[ {S{'}_{11}^1\left( b \right){\kern 1pt} - {\kern 1pt} S{'}_{12}^1\left( b \right)} \right] \\ \end{gathered}$$
(44)

where \(P\left( {a,x} \right)\) is the incomplete gamma function, and

$$S{'}_{11}^1\left( b \right) = \int_0^\infty {\left[ {\int_0^y {\frac{1}{\Gamma \left( b \right)}{u^{b - 1}}{e^{ - u}}du} } \right]\frac{1}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy}$$
(45)
$$S{'}_{12}^1\left( b \right) = \int_0^{\frac{{x_0}}{a}} {\left[ {\int_0^y {\frac{1}{\Gamma \left( b \right)}{u^{b - 1}}{e^{ - u}}du} } \right]\frac{1}{\Gamma \left( b \right)}{y^b}{e^{ - y}}dy}$$
(46)

With the use of the properties of both the gamma function and the incomplete gamma function, Eqs. (45) and (46) are derived as

$$S{'}_{11}^1\left( b \right) = \frac{b}{2} + \frac{1}{2}{B^{ - 1}}\left( {b,\frac{1}{2}} \right)$$
(47)
$$S{'}_{12}^1\left( b \right) = bP\left( {b,\frac{{x_0}}{a}} \right)P\left( {b + 1,\frac{{x_0}}{a}} \right) - \frac{b}{2}{\left[ {P\left( {b,\frac{{x_0}}{a}} \right)} \right]^2} + \frac{1}{2}{B^{ - 1}}\left( {b,\frac{1}{2}} \right)P\left( {2b,\frac{{2{x_0}}}{a}} \right)$$
(48)

where \(B\left( {x,y} \right)\) is the beta function.

Substituting Eqs. (47) and (48) into Eq. (44), we obtain

$$\begin{gathered} {{\beta ^{\prime}}_1} = a\left[ {\frac{b}{2} + \frac{1}{2}{B^{ - 1}}\left( {b,\frac{1}{2}} \right)} \right] \\ - a\left\{ {bP\left( {b,\frac{{x_0}}{a}} \right)P\left( {b + 1,\frac{{x_0}}{a}} \right) - \frac{b}{2}{{\left[ {P\left( {b,\frac{{x_0}}{a}} \right)} \right]}^2} + \frac{1}{2}{B^{ - 1}}\left( {b,\frac{1}{2}} \right)P\left( {2b,\frac{{2{x_0}}}{a}} \right)} \right\} \\ \end{gathered}$$
(49)

Combining Eqs. (14) and (15), one obtains

$${\lambda ^{\prime}_1} = ab\left[ {1 - P\left( {b + 1,\frac{{x_0}}{a}} \right)} \right]$$
(50)
$$\begin{gathered} \frac{{{{\lambda ^{\prime}}_1} + {{\lambda ^{\prime}}_2}}}{2} = a\left[ {\frac{b}{2} + \frac{1}{2}{B^{ - 1}}\left( {b,\frac{1}{2}} \right)} \right] \\ - a\left\{ {bP\left( {b,\frac{{x_0}}{a}} \right)P\left( {b + 1,\frac{{x_0}}{a}} \right) - \frac{b}{2}{{\left[ {P\left( {b,\frac{{x_0}}{a}} \right)} \right]}^2} + \frac{1}{2}{B^{ - 1}}\left( {b,\frac{1}{2}} \right)P\left( {2b,\frac{{2{x_0}}}{a}} \right)} \right\} \\ \end{gathered}$$
(51)

1.4 Parameters Estimation for WB2 Distribution Using PLMs

According to Eqs. (12) and (25), the PPWMs of WB2 distribution are derived as

$${\alpha ^{\prime}_0} = b\Gamma \left( {\frac{1}{a} + 1} \right)\left\{ {1 - P\left[ {\frac{1}{a} + 1, - \ln \left( {1 - {F_0}} \right)} \right]} \right\}$$
(52)
$${\alpha ^{\prime}_1} = \frac{{b\Gamma \left( {\frac{1}{a} + 1} \right)}}{{{2^{1/a + 1}}}}\left\{ {1 - P\left[ {\frac{1}{a} + 1, - 2\ln \left( {1 - {F_0}} \right)} \right]} \right\}$$
(53)

Using Eqs. (52) and (53) one can write

$$\frac{{{{\alpha ^{\prime}}_1}}}{{{{\alpha ^{\prime}}_0}}} = \frac{{1 - P\left[ {\frac{1}{a} + 1, - 2\ln \left( {1 - {F_0}} \right)} \right]}}{{{2^{1/a + 1}}\left\{ {1 - P\left[ {\frac{1}{a} + 1, - \ln \left( {1 - {F_0}} \right)} \right]} \right\}}} = z$$
(54)

The curve of z vs. a can be approximated by a quadratic function of the form

$$a = {a_0} + {a_1}z + {a_2}{z^2}$$
(55)

For a fixed F0, five z values can be calculated by the right side of Eq. (54), corresponding to five given a values, e.g. a = 0.1–0.5. Substituting these calculated z values into Eq. (55) yields a set of linear equations. One can then get the solutions for a0, a1 and a2 corresponding to that fixed value of F0.

Replacing the values of the PPWM \({\alpha ^{\prime}_0}\) and \({\alpha ^{\prime}_1}\) in Eq. (54) by the PLMs \({\lambda ^{\prime}_1}\) and \({\lambda ^{\prime}_2}\) shown in Eqs. (14)-(15), one can write

$$z = \frac{{{{\alpha ^{\prime}}_1}}}{{{{\alpha ^{\prime}}_0}}} = \frac{{\left( {{{\lambda ^{\prime}}_1} - {{\lambda ^{\prime}}_2}} \right)}}{{2{{\lambda ^{\prime}}_1}}}$$
(56)

The sample estimate \(\hat z\) can then be obtained by replacing \({\lambda ^{\prime}_1}\) and \({\lambda ^{\prime}_2}\) by their sample estimate \({l^{\prime}_1}\) and \({l^{\prime}_2}\).

$$\hat z = \frac{{\left( {{{l^{\prime}}_1} - {{l^{\prime}}_2}} \right)}}{{2{{l^{\prime}}_1}}}$$
(57)

Substituting Eq. (57) and the estimates of a0, a1 and a2 in Eq. (55), one can get the estimate for \(\hat a\). The parameter b can then be obtained successively from Eq. (58).

$$\hat b = \frac{{{{l^{\prime}}_1}}}{{\Gamma \left( {\frac{1}{\hat a} + 1} \right)\left\{ {1 - P\left[ {\frac{1}{\hat a} + 1, - \ln \left( {1 - {F_0}} \right)} \right]} \right\}}}$$
(58)

The Optimal Distribution for Each Station

Table 7 The optimal distribution for each station

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Song, S. Comparison of Frequency Calculation Methods for Precipitation Series Containing Zero Values. Water Resour Manage 36, 527–550 (2022). https://doi.org/10.1007/s11269-021-03038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-021-03038-4

Keywords

Navigation