Small and Mid-Sized Farmer Irrigation Adoption in the Context of Public Provision of Hydric Infrastructure in Latin America and Caribbean


According to 2013 statistics from the Economic Commission for Latin America and the Caribbean (EC-LAC 2013), a mere 3.03% of the total agricultural area in ​​the region uses some type of irrigation technology. Thus, there is a high degree of sub-utilization of existing hydric infrastructure given that the supply of irrigation capacity in many countries is greater than the calculated use (see Herrera et al. 2005; IICA 2011; CONAGUA 2014, among others). Nonetheless, there are a limited number of studies that characterize the factors affecting the adoption of irrigation by small and mid-sized farmers in the influence area of irrigation projects. This manuscript presents a novel empirical decision model applicable to irrigation adoption based on exogenous and endogenous factors in the context of LAC countries, which is solved through a binary equation system with latent variables. The main goals are to capture the effect that certain idiosyncratic variables, such as lack of credit access, can have over the decision of irrigation adoption; as well as the costs associated to private goods, financed through credit, which are necessary to access to the benefits of the provision of irrigation as a public good.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    For more details see Cremer & Laffont (2003)

  2. 2.

    This vector is comprised of soil texture, fertility, slope and some climate variables that may influence crop productivity or viability.

  3. 3.

    While observing private investment costs may prove challenging, suitable proxies would be the relative distances described above, which can be constructed by GIS procedures based on land plot maps. The assumption that investment costs across farmers should vary proportionally to the distance to the nearest water source should be suitable for surface irrigation adoption.

  4. 4.

    This could be constructed by a careful combination of data obtained by both geo-referenced survey collection and manipulation of digital maps of land plot characteristics by means of GIS procedures. Section 3 will present an example of such approach.

  5. 5.

    In Ecuador, the smallest administrative-political unit is the parish. In this case study, these are Ricaurte, Catarama and Ventanas.


  1. Angrist JD, Pischke JS (2008) Mostly harmless econometrics: an empiricist’s companion. Princeton University Press, Princeton

  2. Bartus T (2005) Estimation of marginal effects using margeff. Stata J 5(3):309–329

    Google Scholar 

  3. CAPSERVS (2011) Estudio de Línea Base para el Proyecto de Riego y Drenaje del Río Catarama. Consultora CAPSERVS Medios

  4. Chiburis RC, Das J, Lokshin M (2012) A practical comparison of the bivariate probit and linear IV estimators. Econ Lett 117(3):762–766

    Article  Google Scholar 

  5. Christofides LN, Stengos T, Swidinsky R (1997) On the calculation of marginal effects in the bivariate probit model. Econ Lett 54(3):203–208

    Article  Google Scholar 

  6. CONAGUA (2014) Estadísticas del Agua en México, Edición 2013. Comisión Nacional del Agua, Secretaría de Medio Ambiente y Recursos Naturales (CONAGUA)

  7. Cremer H, Laffont JJ (2003) Public goods with costly access. J Publ Econ, Elsevier, 87(9):1985–2012

  8. EC-LAC (2013) Anuario Estadístico de América Latina y el Caribe. Website accessed on September 2014 from

  9. Escalante R, Catalán H, Basurto S (2013) Determinantes del crédito en el sector agropecuario mexicano: un análisis mediante un modelo Probit. Cuadernos de Desarrollo Rural 10(71):101–124

    Google Scholar 

  10. FAO (2000) Irrigation in Latin America and the Caribbean in Figures (Water Report, 20). Food and Agriculture Organization of the United Nations (FAO). ISBN 92-5-004459-3

  11. FAO (2016) AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2016/05/28 from

  12. Fernandez-Cornejo J, McBride WD (2002) Adoption of bioengineered crops. ERS Agricultural Economic Report No. AER810

  13. Green G, Sunding D, Zilberman D, Parker D (1996) Explaining irrigation technology choices: a microparameter approach. Am J Agric Econ 78(4):1064–1072

    Article  Google Scholar 

  14. Hausman JA (1978) Specification tests in econometrics. Econometrica 46:1251–1271

    Article  Google Scholar 

  15. Heckman JJ (1978) Dummy endogenous variables in a simultaneous equation system. Econometrica 46:931–959

    Article  Google Scholar 

  16. Herrera PA, van Huylenbroeck G, Espinel RL (2005) Institutional economic assessment of irrigated agriculture: the case of the peninsula of Santa Elena. ISBN 978-9059-89-072-5

  17. Herrera PA, van Huylenbroeck G, Espinel RL (2006) Asymmetric information on the provision of irrigation through a public infrastructure. Water Resour Manag 20(3):431–447

    Article  Google Scholar 

  18. Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Berkeley, University of California Press, vol 1, pp 221–233

  19. IICA (2011) Boletín informativo mensual AgroAcontecer número 15. Instituto Interamericano de Cooperación para la Agricultura (IICA)

  20. Leiton Soubannier JS (1985) Riego y Drenaje, Año de Edición: 1985. ISBN 978-9977-64-190-4

  21. MAGAP (2011) Plan nacional de riego y drenaje. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca - Subsecretaría de Riego y Drenaje (MAGAP)

  22. Murphy A (2007) Score tests of normality in bivariate probit models. Econ Lett 95(3):374–379

    Article  Google Scholar 

  23. Negri DH, Brooks DH (1990) Determinants of irrigation technology choice. West J Agric Econ:213–223

  24. Norton RD (2004) Política de desarrollo agrícola. Conceptos y principios. Food and agriculture Organization of the United Nations (FAO). Website accessed on July 2016 from

  25. Oluwasola O, Alimi T (2008) Determinants of agricultural credit demand and supply among small-scale farmers in Nigeria. Outlook on Agriculture 37(3):185–193

    Article  Google Scholar 

  26. White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48:817–830

    Article  Google Scholar 

  27. Wooldridge JM (2010) Econometric analysis of cross section and panel data. MIT press, Cambridge, pp 453–461

    Google Scholar 

  28. Wu D-M (1974) Alternative tests of independence between stochastic regressors and disturbances: finite sample results. Econometrica 42:529–546

    Article  Google Scholar 

  29. Zeller M, Diagne A, Mataya C (1998) Market access by smallholder farmers in Malawi: implications for technology adoption, agricultural productivity and crop income. Agric Econ 19(1):219–229

    Article  Google Scholar 

Download references


The authors acknowledge the Prefectura de Los Ríos, Ecuador, and the Japan International Cooperation Agency (JICA) for supporting the data collection phase and for allowing its use. Also, collaboration from Juan Carlos Pindo and Maria Fernanda Loor was paramount for the success of this work.

Author information



Corresponding author

Correspondence to Gonzalo Villa-Cox.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villa-Cox, G., Herrera, P., Villa-Cox, R. et al. Small and Mid-Sized Farmer Irrigation Adoption in the Context of Public Provision of Hydric Infrastructure in Latin America and Caribbean. Water Resour Manage 31, 4617–4631 (2017).

Download citation


  • Irrigation adoption
  • Rural credit and development
  • Recursive bivariate Probit
  • Endogenous linear probability model