Skip to main content
Log in

Flood Safety versus Remaining Risks - Options and Limitations of Probabilistic Concepts in Flood Management

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Over decades, the planning of flood management was based on a safety-oriented approach. A design flood was estimated by probabilistic means to specify the limit up to which a flood should be controlled completely by technical measures. A case of failure was expected only in such cases where the design flood is overtopped. As design floods were specified by very small probabilities, the risk of a flood beyond the design flood was seen as negligible. Devastating flood events all over Europe raised the public awareness of remaining flood risks in the last two decades. Risk management became a political task in the EU. According to the European Flood Directive geographical areas, which could be flooded “with a low probability or under extreme event scenarios”, have to be specified. The combination of “low probability” and “extreme event scenarios” demonstrates the problem of modern flood management. The existing probabilistic tools are not sufficient to specify the risks of failures, which result from critical combinations of multiple characteristics of hydrological loads. Scenarios are one option to specify them, but their probabilities stay unknown. Multivariate statistics could offer a way to fill this gap, but some problems of their practical application are still unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apel H, Thieken AH, Merz B, Blöschl G (2004) Flood risk assessment and associated uncertainty. Nat Hazards Earth Syst Sci 4(2):295–308. doi:10.5194/nhess-4-295-2004

    Article  Google Scholar 

  • Apel H, Merz B, Thieken AH (2008) Quantification of uncertainties in flood risk assessments. Intl. J. River Basin Management (6)

  • Apel H, Merz B, Thieken A (2009) Influence of dike breaches on flood frequency estimation. Comput Geosci 35(5):907–923. doi:10.1016/j.cageo.2007.11.003

    Article  Google Scholar 

  • Bachmann D, Huber NP, Johann G, Schüttrumpf H (2013) Fragility curves in operational dike reliability assessment. Georisk: Assess Manag Risk Eng Syst Geohazards 7(1):49–60. doi:10.1080/17499518.2013.767664

    Google Scholar 

  • Charalambous J, Rahman A, Carroll D (2013) Application of Monte Carlo simulation technique to design flood estimation. A case study for north Johnstone River in Queensland, Australia. Water Resour Manag 27(11):S. 4099–S. 4111. doi:10.1007/s11269-013-0398-9

    Article  Google Scholar 

  • Costa JE (1978) The dilemma of flood control in the United States. Environ Manag 2(4):313–322. doi:10.1007/BF01866671

    Article  Google Scholar 

  • Cunnane C (1987) Review of Statistical Models for Flood Frequency Estimation. In: Singh V (ed) Hydrologic Frequency Modeling. Springer Netherlands, pp 49–95

  • Cunnane C (2009) Factors affecting choice of distribution for flood series. Hydrol Sci J 30(1):25–36. doi:10.1080/02626668509490969

    Article  Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10(1):50–57. doi:10.1061/(ASCE)1084-0699(2005)10:1(50)

    Article  Google Scholar 

  • DIN (2004) Deutsches Institut für Normung e. V Stauanlagen-Teil 11: Talsperren (Dam plants - Part 11: Dams) 93.160(19700–11:2004–07)

  • European Commission (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. http://ec.europa.eu/environment/water/flood_risk/index.htm. Accessed 27 September 2016

  • Favre A, El Adlouni S, Perreault L, Thiémonge N,  Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resources Research 40(1). doi:10.1029/2003WR002456

  • Fischer S, Schumann A (2015) Robust flood statistics: comparison of peak over threshold approaches based on monthly maxima and TL-moments. Hydrol Sci J 61(3):457–470. doi:10.1080/02626667.2015.1054391

    Article  Google Scholar 

  • GDV (2014) Das Juni-Hochwasser 2013 – Ein Jahr danach. http://www.gdv.de/2014/05/die-meisten-schaeden-entstanden-weitab-der-grossen-fluesse/

  • Gräler B, van den Berg MJ, Vandenberghe S, Petroselli A, Grimaldi S, de Baets B, Verhoest NEC (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci 17(4):1281–1296. doi:10.5194/hess-17-1281-2013

    Article  Google Scholar 

  • Hall JW, Dawson RJ, Sayers PB, Rosu C, Chatterton JB, Deakin R (2003a) A methodology for national-scale flood risk assessment. Proc Institution Civ Eng - Water Marit Eng 156(3):235–247. doi:10.1680/wame.2003.156.3.235

    Article  Google Scholar 

  • Hall JW, Meadowcroft IC, Sayers PB, Bramley ME (2003b) Integrated flood risk Management in England and Wales. Nat Hazards Rev 4(3):126–135. doi:10.1061/(ASCE)1527-6988(2003)4:3(126)

    Article  Google Scholar 

  • Hall J, Arheimer B, Borga M, Brázdil R, Claps P, Kiss A, Kjeldsen TR, Kriaučiūnienė J, Kundzewicz ZW, Lang M, Llasat MC, Macdonald N, McIntyre N, Mediero L, Merz B, Merz R, Molnar P, Montanari A, Neuhold C, Parajka J, Perdigão RAP, Plavcová L, Rogger M, Salinas JL, Sauquet E, Schär C, Szolgay J, Viglione A, Blöschl G (2014) Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol Earth Syst Sci 18(7):2735–2772. doi:10.5194/hess-18-2735-2014

    Article  Google Scholar 

  • Hundecha Y, Pahlow M, Schumann A (2009) Modeling of daily precipitation at multiple locations using a mixture of distribution to characterize the extremes. Water Resour Res 45(W12412):1–15. doi:10.1029/2008WR007453

    Google Scholar 

  • Kellens W, Vanneuville W, Verfaillie E, Meire E, Deckers P, de Maeyer P (2013) Flood risk Management in Flanders. Past developments and future challenges. Water Resour Manag 27(10):S. 3585–S. 3606. doi:10.1007/s11269-013-0366-4

    Article  Google Scholar 

  • Klein B, Pahlow M, Hundecha Y, Schumann A (2010) Probability analysis of hydrological loads for the Design of Flood Control Systems Using Copulas. J Hydrol Eng 15(5):360–369

    Article  Google Scholar 

  • Klein B, Schumann AH, Pahlow M (2011) Copulas – new risk assessment methodology for dam safety. In: Schumann AH (ed) Flood risk assessment and management: how to specify hydrological loads. Their Consequences and Uncertainties. Springer Science+Business Media B.V, Dordrecht, pp 149–185

    Chapter  Google Scholar 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201:272–288

    Article  Google Scholar 

  • Merz B, Hall J, Disse M, Schumann A (2010) Fluvial flood risk management in a changing world. Nat Hazards Earth Syst Sci 10(3):509–527

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) CLIMATE CHANGE: stationarity is dead: whither water management? Science 319(5863):573–574. doi:10.1126/science.1151915

    Article  Google Scholar 

  • Munich Re Loss events worldwide 1980 - 2015. (2016) https://www.munichre.com/site/touch-naturalhazards/get/documents_E-1125431578/mr/assetpool.shared/Documents/5_Touch/_NatCatService/Focus_analyses/Loss_events_worldwide_1980-2015.pdf Accessed 26 October 2016

  • Nelsen RB (2005) Dependence Modeling with Archimedean Copulas. Proceedings of the Second Brazilian Conference on Statistical Modeling in Insurance and Finance, Institute of Mathematics and Statistics, University of Sao Paulo (2005), pp 45–54

  • Nelsen RB (2006) An Introduction to Copulas, 2. ed. 2006. Springer series in statistics. Springer New York, New York

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40(12). doi:10.1029/2004WR003133

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12(4):369–380. doi:10.1061/(ASCE)1084-0699(2007)12:4(369)

    Article  Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) On the return period and design in a multivariate framework. Hydrol Earth Syst Sci 15(11):3293–3305. doi:10.5194/hess-15-3293-2011

    Article  Google Scholar 

  • Salvadori G, Durante F, De Michele C (2013) Multivariate return period calculation via survival functions. Water Resour Res 49(4):2308–2311. doi:10.1002/wrcr.20204

    Article  Google Scholar 

  • Salvadori G, Durante F, De Michele C, Bernardi M, Petrella L (2016) A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resour Res 52(5):3701–3721. doi:10.1002/2015WR017225

    Article  Google Scholar 

  • Sayers PB, Hall JW, Meadowcroft IC (2002) Towards risk based flood hazard management in the UK. Proceedings of the ICE, Civil Engineering 150(5):36–42. doi:10.1680/cien.150.5.36.38631

    Google Scholar 

  • Schulte M, Schumann A (2015) Downstream-directed performance assessment of reservoirs in multi-tributary catchments by application of multivariate statistics. WRM 29(2):419–430. doi:10.1007/s11269-014-0815-8

    Google Scholar 

  • Schumann A, Nijssen D (2011) Application of scenarios and multi-criteria decision making tools in flood polder planning. In: Schumann AH (ed) Flood risk assessment and management: how to specify hydrological loads, Their Consequences and Uncertainties. Springer Science+Business Media B.V, Dordrecht, pp 249–275

  • Shiau J, Wang H, Tsai C (2006) Bivariate frequency analysis of floods using copulas. Journal of the American Water Resources Association 42(6):1549–1564. doi:10.1111/j.1752-1688.2006.tb06020.x

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36. doi:10.1016/j.advwatres.2014.12.013

    Article  Google Scholar 

  • Sieber H-U (2000) Hazard and risk assessment considerations in German standards for dams – present situation and suggestions. In: ICOLD (ed) XX. ICOLD Congress: Q.76; R.43

  • Simm J, Gouldby B, Sayers P, Flikweert J, Wersching S, Bramley M (2009) Representing fragility of flood and coastal defences: getting into the detail. In: Samuels P (ed) Flood risk management: research and practice; proceedings of the European conference on flood risk management research into practice (FLOODrisk 2008), Oxford, UK, 30 September - 2 October 2008. CRC Press, Boca Raton

    Google Scholar 

  • Sklar A (1959) Fonctions de rèpartition à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    Google Scholar 

  • Srdjevic B, Medeiros YDP (2008) Fuzzy AHP assessment of water management plans. WRM 22(7):877–894. doi:10.1007/s11269-007-9197-5

    Google Scholar 

  • Viglione A, Merz B, Viet Dung N, Parajka J, Nester T, Bloschl G (2016) Attribution of regional flood changes based on scaling fingerprints. Water Resour Res 52(7):5322–5340. doi:10.1002/2016WR019036

    Article  Google Scholar 

  • Volpi E, Fiori A, Grimaldi S, Lombardo F, Koutsoyiannis D (2015) One hundred years of return period: strengths and limitations. Water Resour Res 51(10):8570–8585. doi:10.1002/2015WR017820

    Article  Google Scholar 

  • Woods R, Sivapalan M (1999) A synthesis of space-time variability in storm response: rainfall, runoff generation, and routing. Water Resour Res 35(8):2469–2485

    Article  Google Scholar 

  • Yevjevich V (1991) Tendencies in hydrology research and its applications for 21st century. Water Resour Manag 5(1):1–23. doi:10.1007/BF00422036

    Article  Google Scholar 

  • Zhang L, Singh V P (2006) Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering 11(2):150–164. doi:10.1061/(ASCE)1084-0699(2006)11:2(150)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schumann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumann, A. Flood Safety versus Remaining Risks - Options and Limitations of Probabilistic Concepts in Flood Management. Water Resour Manage 31, 3131–3145 (2017). https://doi.org/10.1007/s11269-017-1700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1700-z

Keywords

Navigation