Skip to main content

Copulas – New Risk Assessment Methodology for Dam Safety

  • Chapter
  • First Online:
Flood Risk Assessment and Management

Abstract

Consideration of a broad range of hydrological loads is essential for risk-based flood protection planning. Furthermore, in the planning process of technical retention facilities it is necessary to use flood events, which are specified by several characteristics (peak, volume and shape). Multivariate statistical methods are required for their probabilistic evaluation. Coupled stochastic-deterministic simulation may be applied to generate a runoff time series, since the required amount of data is generally not available. Even the effect of complex flood protection systems may be evaluated through generation of a data base by means of stochastic-deterministic simulations with subsequent statistical analysis of the individual hydrological load scenarios. Multivariate frequency analyses of correlated random variables are useful to specify these scenarios statistically. Copulas are a very flexible method to estimate multivariate distributions, because the marginal distributions of the random variables can differ. Here a methodology for flood risk assessment is presented which was applied in two case studies in Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Automatic Control AC19(6):716–723

    Article  Google Scholar 

  • Bergmann H, Sackl B (1989) Determination of design flood hydrographs based on regional hydrological data. In: Kavvas ML (ed) New directions for surface water modelling. IAHS Publ. no. 181, Wallingford

    Google Scholar 

  • Blazkova S, Beven K (2004) Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. J Hydrol 292(1–4):153–172

    Article  Google Scholar 

  • Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, Chichester

    Google Scholar 

  • Deheuvels P (1979) Empirical dependence function and properties – nonparametric test of independence. Bull De La Classe Des Sci Acad R De Belg 65(6):274–292

    Google Scholar 

  • De Michele C, Salvadori G (2003) A generalized pareto intensity-duration model of storm rainfall exploiting 2-Copulas. J Geophys Res Atmospheres 108(D2):ACL 15–1

    Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10(1):50–57

    Article  Google Scholar 

  • Embrechts P, Lindskog F, McNeil AJ (2003) Modelling dependence with copulas and applications to risk management. In: Rachev ST (ed) Handbook of heavy tailed distributions in finance. Elsevier, North-Holland, Amsterdam

    Google Scholar 

  • Evin G, Favre AC (2008) A new rainfall model based on the Neyman-Scott process using cubic copulas. Water Resour Res 44(3):1–18

    Article  Google Scholar 

  • Favre AC, El Adlouni S, Perreault L, Thiemonge N, Bobee B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(1):1–12

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrologic Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Remillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré – Probabilités et Statistique 44(6):1096–1127

    Article  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical-Inference procedures for Bivariate Archimedean Copulas. J Am Stat Assoc 88(423):1034–1043

    Article  Google Scholar 

  • Genest C, Quessy JF, Remillard B (2006) Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand J Stat 33(2):337–366

    Article  Google Scholar 

  • Genest C, Remillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213

    Article  Google Scholar 

  • Goel NK, Seth SM, Chandra S (1998) Multivariate modeling of flood flows. J Hydraulic Eng 124(2):146–155

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006a) Design hyetograph analysis with 3-copula function. Hydrol Sci J-J Des Sci Hydrologiques 51(2):223–238

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006b) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29(8):1155–1167

    Article  Google Scholar 

  • Haberlandt U, Ebner von Eschenbach AD, Buchwald I (2008) A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol Earth Syst Sci 12(6):1353–1367

    Article  Google Scholar 

  • Hiemstra LAV, Zucchini WS, Pegram GGS (1976) Method of finding family of runhydrographs for given return periods. J Hydrol 30(1–2):95–103

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hundecha Y, Pahlow M, Klein B, Schumann A (2008) Development and test of a stochastic rainfall generator for the generation of hydrologic load scenarios (in German). Forum für Hydrologie und Wasserwirtschaft, Heft 23.06, Beiträge zum Tag der Hydrologie 2008, Hannover, pp 34–41

    Google Scholar 

  • Hundecha Y, Pahlow M, Schumann A (2009) Modeling of daily precipitation at multiple locations using a mixture of distributions to characterize the extremes. Water Resour Res 45(W12412):1–15

    Google Scholar 

  • Hydrotec (2007) Niederschlags-Abfluss-Modell – NASIM – Version 3.6.0. Programmdokumentation. Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH, Aachen

    Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, New York

    Google Scholar 

  • Kao SC, Govindaraju RS (2008) Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resour Res 44(2):1–19

    Article  Google Scholar 

  • Karmakar S, Simonovic SP (2008) Bivariate flood frequency analysis: Part 1. Determination of marginals by parametric and nonparametric techniques. J Flood Risk Manag 1:190–200

    Article  Google Scholar 

  • Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2:32–44

    Article  Google Scholar 

  • Kim G, Silvapulle MJ, Silvapulle P (2007) Comparison of semiparametric and parametric methods for estimating copulas. Comput Stat Data Anal 51(6):2836–2850

    Article  Google Scholar 

  • Klein B, Schumann A (2006) Generation of multi-peak hydrographs for the flood design of dams (in German). Forum für Hydrologie und Wasserwirtschaft, Heft 15.06, Beiträge zum Tag der Hydrologie 2006, Band 2, München, pp 255–266

    Google Scholar 

  • Klein B, Pahlow M, Hundecha Y, Schumann A (2010) Probability analysis of hydrological loads for the design of flood control systems using copulas. J Hydrol Eng 15(5). doi: 10.1061/(ASCE)HE.1943-5584.0000204

    Google Scholar 

  • Koutsoyiannis D (2001) Coupling stochastic models of different time scales. Water Resour Res 37(2):379–392

    Article  Google Scholar 

  • Koutsoyiannis D, Onof C, Wheater HS (2003) Multivariate rainfall disaggregation at a fine timescale. Water Resour Res 39(7):1–18

    Article  Google Scholar 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288

    Article  Google Scholar 

  • Nelsen RB (1999) An introduction to copulas. Springer, New York, NY

    Google Scholar 

  • Nijssen D, Schumann A, Pahlow M, Klein B (2009) Planning of technical flood retention measures in large river basins under consideration of imprecise probabilities of multivariate hydrological loads. Nat Hazards Earth Syst Sci 9(4):1349–1363

    Article  Google Scholar 

  • Petry U, Hundecha Y, Pahlow M, Schumann A (2008) Generation of severe flood scenarios by stochastic rainfall in combination with a rainfall runoff model. Proceedings of the 4th International Symposium on Flood Defense, 6–8 May, Toronto, ON

    Google Scholar 

  • Renard B, Lang M (2006) Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Adv Water Resour 30(4):897–912

    Article  Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40(12):1–17

    Article  Google Scholar 

  • Salvadori G, De Michele C (2006) Statistical characterization of temporal structure of storms. Adv Water Resour 29(6):827–842

    Article  Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12(4):369–380

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Series: Water Science and Technology Library, vol 56. Springer, Dordrecht

    Google Scholar 

  • Sandoval CE, Raynal-Villasenor J (2008) Trivariate generalized extreme value distribution in flood frequency analysis. Hydrol Sci J-J Des Sci Hydrologiques 53(3):550–567

    Article  Google Scholar 

  • Saunders R, Laud P (1980) The multidimensional kolmogorov goodness-of-fit test. Biometrika 67(1):237–237

    Google Scholar 

  • Schumann A (2009) Abschlussbericht des BMBF-Verbundforschungsvorhabens “Integrative Nutzung des technischen Hochwasserrückhalts in Poldern und Talsperren am Beispiel des Flussgebiets der Unstrut”. Schriftenreihe Hydrologie/Wasserwirtschaft Nr. 24, Lehrstuhl für Hydrologie, Wasserwirtschaft und Umwelttechnik, Ruhr-Universität Bochum, Bochum

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Serinaldi F, Grimaldi S (2007) Fully nested 3-copula: procedure and application on hydrological data. J Hydrol Eng 12(4):420–430

    Article  Google Scholar 

  • Shiau JT (2003) Return period of bivariate distributed extreme hydrological events. Stoch Environ Res Risk Assess 17(1–2):42–57

    Google Scholar 

  • Shiau JT, Feng S, Nadaraiah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Processes 21(16):2157–2163

    Article  Google Scholar 

  • Shiau JT, Wang HY, Tsai CT (2006) Bivariate frequency analysis of floods using copulas. J Am Water Resour Assoc 42(6):1549–1564

    Article  Google Scholar 

  • Singh K, Singh VP (1991) Derivation of bivariate probability density-functions with exponential marginals. Stoch Hydrol Hydraul 5(1):55–68

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de répartion à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:220–231

    Google Scholar 

  • Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, NY

    Google Scholar 

  • Whelan N (2004) Sampling from Archimedean copulas. Quant Finance 4(3):339–352

    Article  Google Scholar 

  • Yue S (1999) Applying bivariate normal distribution to flood frequency analysis. Water Int 24(3):248–254

    Article  Google Scholar 

  • Yue S (2001) A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Processes 15(6):1033–1045

    Article  Google Scholar 

  • Yue S, Ouarda T, Bobee B (2001) A review of bivariate gamma distributions for hydrological application. J Hydrol 246(1–4):1–18

    Article  Google Scholar 

  • Yue S, Ouarda T, Bobee B, Legendre P, Bruneau P (1999) The Gumbel mixed model for flood frequency analysis. J Hydrol 226(1–2):88–100

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2007a) Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 332(1–2):93–109

    Article  Google Scholar 

  • Zhang L, Singh VP (2007b) Gumbel-Hougaard copula for trivariate rainfall frequency analysis. J Hydrol Eng 12(4):409–419

    Article  Google Scholar 

  • Zhang L, Singh VP (2007c) Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J Hydrol Eng 12(4):431–439

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Klein, B., Schumann, A.H., Pahlow, M. (2011). Copulas – New Risk Assessment Methodology for Dam Safety. In: Schumann, A. (eds) Flood Risk Assessment and Management. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9917-4_8

Download citation

Publish with us

Policies and ethics