Skip to main content

Advertisement

Log in

Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

In this paper, we tested the operational capacity of an interoperable model coupling system for the irrigation scheduling (IMCIS) at an experimental cotton (Gossypium hirsutum L.) field in Northern Greece. IMCIS comprises a meteorological model (TAPM), downscaled at field level, and a water-driven cultivation tool (AquaCrop), to optimize irrigation and enhance crop growth and yield. Both models were evaluated through on-site observations of meteorological variables, soil moisture levels and canopy cover progress. Based on irrigation management (deficit, precise and farmer’s practice) and method (drip and sprinkler), the field was divided into six sub-plots. Prognostic meteorological model results exhibited satisfactory agreement in most parameters affecting ETo, simulating adequately the soil water balance. Precipitation events were fairly predicted, although rainfall depths needed further adjustment. Soil water content levels computed by the crop growth model followed the trend of soil humidity measurements, while the canopy cover patterns and the seed cotton yield were well predicted, especially at the drip irrigated plots. Overall, the system exhibited robustness and good predicting ability for crop water needs, based on local evapotranspiration forecasts and crop phenological stages. The comparison of yield and irrigation levels at all sub-plots revealed that drip irrigation under IMCIS guidance could achieve the same yield levels as traditional farmer’s practice, utilizing approximately 32% less water, thus raising water productivity up to 0.96 kg/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Ain F, Attar J, Hussein F, Heng L (2009) Comparison of nuclear and capacitance-based soil water measuring techniques in salt-affected soils. Soil Use Manag 25:362–367. doi:10.1111/j.1475-2743.2009.00246.x

    Article  Google Scholar 

  • Al-Kufaishi S, Blackmore B, Sourell H (2006) The feasibility of using variable rate water application under a central pivot irrigation system. Irrig Drain Syst 20:317–327. doi:10.1007/s10795-006-9010-2

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56 FAO. Rome 300:D05109

    Google Scholar 

  • Battilani A, Letterio T, Chiari G (2014) AquaCrop model calibration and validation for processing tomato crop in a sub-humid climate. In: XIII International Symposium on Processing Tomato 1081, pp 167–174

  • Buchleiter G, Camp C, Evans R, King B (2000) Technologies for variable water application with sprinklers. In: National irrigation symposium: proceedings of the 4th Decennial Symposium: November 14–16, Phoenix, Arizona/edited by Robert G. Evans, Brian L. Benham, Todd P. Trooien, 2000. American Society of Agricultural Engineers, pp 316–321

  • Camp C, Sadler E, Evans R (2006) Precision Water Management: Current Realities, Possibilities and Trends. In: Srinivasan A (ed) Handbook of Precision Agriculture. Food Products Press, Binghamton

    Google Scholar 

  • Casadesús J, Mata M, Marsal J, Girona J (2012) A general algorithm for automated scheduling of drip irrigation in tree crops. Computers and Electronics in Agriculture 83:11–20. doi:10.1016/j.compag.2012.01.005

  • Chalmers D, Mitchell P, Van Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning [Trickle irrigation] Journal-American Society for Horticultural Science (USA)

  • Duke H, Heermann D, Fraisse C (1992) Linear move irrigation system for fertilizer management research. In: The Irrigation Association Conference: Proc. International Exposition and Technical Conference, New Orleans, pp 72–81

  • Evans R, Buchleiter G, Sadler E, King B, Harting G (2000) Controls for precision irrigation with self-propelled systems. In: Evans RG, Benham BL, Trooien TP (eds) National irrigation symposium: proceedings of the 4th Decennial Symposium, Phoenix, Arizona, 14–16 November 2000. American Society of Agricultural Engineers, St. Joseph, pp 322–331

  • Evett SR, Tolk JA, Howell TA (2006) Soil profile water content determination. Vadose Zone J 5. doi:10.2136/vzj2005.0149

  • Farahani HJ, Izzi G, Oweis TY (2009) Parameterization and evaluation of the AquaCrop Model for full and deficit irrigated cotton. Agron J 101. doi:10.2134/agronj2008.0182s

  • García-Vila M, Fereres E, Mateos L, Orgaz F, Steduto P (2009) Deficit irrigation optimization of cotton with AquaCrop. Agron J 101. doi:10.2134/agronj2008.0179s

  • Garrote L, Iglesias A, Granados A, Mediero L, Martin-Carrasco F (2015) Quantitative assessment of climate change vulnerability of irrigation demands in Mediterranean Europe. Water Resour Manag 29:325–338. doi:10.1007/s11269-014-0736-6

    Article  Google Scholar 

  • Geerts S, Raes D, Garcia M (2010) Using AquaCrop to derive deficit irrigation schedules. Agric Water Manag 98:213–216. doi:10.1016/j.agwat.2010.07.003

    Article  Google Scholar 

  • Geesing D, Bachmaier M, Schmidhalter U (2004) Field calibration of a capacitance soil water probe in heterogeneous fields. Soil Res 42:289–299. doi:10.1071/SR03051

    Article  Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fertilizer Res 27:245–259. doi:10.1007/bf01051131

    Article  Google Scholar 

  • Hurley P, Luhar A (2009) Modelling the meteorology at the Cabauw tower for 2005. Bound-Layer Meteorol 132:43–57. doi:10.1007/s10546-009-9384-4

    Article  Google Scholar 

  • Hurley PJ, Physick WL, Luhar AK (2005) TAPM: a practical approach to prognostic meteorological and air pollution modelling. Environ Model Softw 20:737–752. doi:10.1016/j.envsoft.2004.04.006

    Article  Google Scholar 

  • Hussein F, Janat M, Yakoub A (2011) Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model Spanish. J Agric Res 9:1319–1330. doi:10.5424/sjar/20110904-358-10

    Google Scholar 

  • Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55:2427–2436. doi:10.1093/jxb/erh213

    Article  Google Scholar 

  • Kreins P, Henseler M, Anter J, Herrmann F, Wendland F (2015) Quantification of climate change impact on regional agricultural irrigation and groundwater demand. Water Resour Manag 29:3585–3600. doi:10.1007/s11269-015-1017-8

    Article  Google Scholar 

  • Li Y, Bai G, Yan H (2015) Development and validation of a modified model to simulate the sprinkler water distribution. Comput Electron Agric 111:38–47. doi:10.1016/j.compag.2014.12.003

    Article  Google Scholar 

  • Mancosu N, Spano D, Orang M, Sarreshteh S, Snyder RL (2015) SIMETAW# - a model for agricultural water demand planning. Water Resour Manag 30:541–557. doi:10.1007/s11269-015-1176-7

    Article  Google Scholar 

  • McBratney A, Whelan B, Ancev T, Bouma J (2005) Future directions of precision agriculture. Precision Agriculture 6:7–23 doi:10.1007/s11119-005-0681-8

  • Molle F (2008) “Water for food, water for life: a comprehensive assessment of water Management in Agriculture” D Molden (Ed) Nat Sci Sociétés 16:274–275 doi:10.1051/nss:2008056

  • Papazafiriou Z (1996) Crop evapotranspiration: Regional studies in Greece. In: proceedings of international symposium of applied Agrometeorology Agroclimatology, Volos, Greece, pp 24–26

  • Paraskevas C, Georgiou P, Ilias A, Panoras A, Babajimopoulos C (2012) Calibration equations for two capacitance water content probes. International Agrophysics 26(3). doi:10.2478/v10247-012-0041-7

  • Perea RG, Poyato EC, Montesinos P, Díaz JAR (2015) Irrigation demand forecasting using artificial neuro-genetic networks. Water Resour Manag 29:5551–5567. doi:10.1007/s11269-015-1134-4

    Article  Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: II. Main Algorithms and Software Description. Agron J 101. doi:10.2134/agronj2008.0140s

  • Raine SR, Meyer WS, Rassam DW, Hutson JL, Cook FJ (2007) Soil–water and solute movement under precision irrigation: knowledge gaps for managing sustainable root zones. Irrig Sci 26:91–100. doi:10.1007/s00271-007-0075-y

    Article  Google Scholar 

  • Sadler EJ, Evans RG, Stone KC, Camp CR (2005) Opportunities for conservation with precision irrigation. J Soil Water Conserv 60:371–378

    Google Scholar 

  • Shah N, Das I (2012) Precision irrigation sensor network based irrigation NTECH open access Publisher. India, ISBN 1304633594:217–232

    Google Scholar 

  • Simionesei L, Ramos TB, Brito D, Jauch E, Leitão PC, Almeida C, Neves R (2016) Numerical simulation of soil water dynamics under stationary sprinkler irrigation with Mohid-land. Irrig Drain 65:98–111. doi:10.1002/ird.1944

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101. doi:10.2134/agronj2008.0139s

  • Tarjuelo JM, Ortega JF, Montero J, de Juan JA (2000) Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions. Agric Water Manag 43:263–284. doi:10.1016/S0378-3774(99)00066-9

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res-Atmos 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Teixeira J, Pereira L (1992) ISAREG, an irrigation scheduling model. ICID Bull 41:29–48

    Google Scholar 

  • Wetterhall F, Bárdossy A, Chen D, Halldin S, Xu C-y (2008) Statistical downscaling of daily precipitation over Sweden using GCM output. Theor Appl Climatol 96:95–103. doi:10.1007/s00704-008-0038-0

    Article  Google Scholar 

  • Yunping C, Xiu W, Chunjiang Z (2009) Prescription Map Generation Intelligent System of Precision Agriculture Based on Web Services and WebGIS. In: Management and Service Science, MASS'09. International conference on, 2009. IEEE, pp 1–4

Download references

Acknowledgements

The research leading to these results received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement 311903 - FIGARO (Flexible and Precise Irrigation Platform to Improve Farm-Scale Water Productivity (http://www.figaro-irrigation.net/). Authors wish to thank Pioneer Hi-Bred Hellas for providing the cotton seeds for this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sylaios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsakmakis, I., Kokkos, N., Pisinaras, V. et al. Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models. Water Resour Manage 31, 563–580 (2017). https://doi.org/10.1007/s11269-016-1548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1548-7

Keywords

Navigation