Skip to main content
Log in

Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Accurate and reliable stream-flow forecasting has a key role in water resources planning and management. Most recently, soft computing approaches have become progressively prevalent in modelling hydrological variables and most specifically stream-flows. This is due to their ability to capture the non-linearity and non-stationarity characteristics of the hydrological variables with minimum information requirements. Despite this, they present several challenges in the modelling architecture, as there is a need to establish a suitable pre-processing method for the stream-flow data and an appropriate optimization model has to be integrated in order re-adjust the weights and biases associated with the model structure. On top of that, artificial intelligent models require “trial and error” procedures in order to be properly tuned (number of hidden layers, number of neurons within the hidden layers and the type of the transfer function). However, soft computing approach experienced several problems while calibration such as over-fitting. In this research, the Response Surface Method (RSM) is improved based on high-order polynomial functions for forecasting the river stream-flow namely; High-Order Response Surface (HORS) method. Several higher orders have been examined, second, third, fourth and fifth polynomial functions in order to figure out the best fit that able to mimic the pattern of stream-flow. In order to demonstrate the effectiveness of the proposed model, monthly stream-flow time series data located in Aswan High Dam (AHD) has been examined. A detailed analysis of the overall statistical indicators revealed that the proposed method showed outstanding performance for monthly stream-flow forecasting at AHD. It could be concluded that the fifth order polynomial function outperforms the other orders of the polynomial functions especially with May model who achieved minimum MAE 0.12, NRMSE 0.07, MSE 0.03 and maximum SF and R2 (0.97, 0.99) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afan HA, El-Shafie A, Yaseen ZM et al (2015) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. doi:10.1007/s11269-014-0870-1

    Article  Google Scholar 

  • Amr H, El-Shafie A, El Mazoghi H, Shehata A (2011) Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt. Int J Phys Sci 6:1306–1316

    Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control, 1st edn. Holden-Day, San Francisco

    Google Scholar 

  • Cervarolo G, Mendicino G, Senatore A (2012) Re-modulating water allocation in a complex multi-reservoir system under current and climate change scenarios. Eur Water 37:47–57

    Google Scholar 

  • Ch S, Anand N, Panigrahi BK, Mathur S (2013) Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23. doi:10.1016/j.neucom.2012.07.017

    Article  Google Scholar 

  • Clark MP, Rupp DE, Woods RA et al (2008) Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model. Adv Water Resour 31:1309–1324. doi:10.1016/j.advwatres.2008.06.005

    Article  Google Scholar 

  • Danandeh Mehr A, Kahya E, Bagheri F, Deliktas E (2013) Successive-station monthly streamflow prediction using neuro-wavelet technique. Earth Sci Inf 1–13. doi: 10.1007/s12145-013-0141-3

  • El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manag 23:2289–2315. doi:10.1007/s11269-008-9382-1

    Article  Google Scholar 

  • El-Shafie A, Noureldin A, Taha M et al (2012) Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia. Hydrol Earth Syst Sci 16:1151–1169. doi:10.5194/hess-16-1151-2012

    Article  Google Scholar 

  • Graves D, Pedrycz W (2009) Fuzzy prediction architecture using recurrent neural networks. Neurocomputing 72:1668–1678. doi:10.1016/j.neucom.2008.07.009

    Article  Google Scholar 

  • Guo J, Zhou J, Qin H et al (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081. doi:10.1016/j.eswa.2011.04.114

    Article  Google Scholar 

  • Heddam S (2016) Secchi disk depth estimation from water quality parameters: artificial neural network versus multiple linear regression models? Environ Process. doi:10.1007/s40710-016-0144-4

    Google Scholar 

  • Heddam S, Lamda H, Filali S (2016) Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study. Environ Process 3:153–165. doi:10.1007/s40710-016-0129-3

    Article  Google Scholar 

  • Hipni A, El-shafie A, Najah A et al (2013) Daily forecasting of dam water levels: comparing a Support Vector Machine (SVM) model with Adaptive Neuro Fuzzy Inference System (ANFIS). Water Resour Manag 27:3803–3823. doi:10.1007/s11269-013-0382-4

    Article  Google Scholar 

  • Husain T (1985) Kalman filter estimation model in flood forecasting. Adv Water Resour 8:15–21. doi:10.1016/0309-1708(85)90075-2

    Article  Google Scholar 

  • Kagoda PA, Ndiritu J, Ntuli C, Mwaka B (2010) Application of radial basis function neural networks to short-term streamflow forecasting. Phys Chem Earth 35:571–581. doi:10.1016/j.pce.2010.07.021

    Article  Google Scholar 

  • Kalman RE et al (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:35–45. doi:10.1115/1.3662552

    Article  Google Scholar 

  • Katambara Z, Ndiritu JG (2010) A hybrid conceptual-fuzzy inference streamflow modelling for the Letaba River system in South Africa. Phys Chem Earth 35:582–595. doi:10.1016/j.pce.2010.07.032

    Article  Google Scholar 

  • Keshtegar B, Miri M (2014) Reliability analysis of corroded pipes using conjugate HL–RF algorithm based on average shear stress yield criterion. Eng Fail Anal 46:104–117

    Article  Google Scholar 

  • Keshtegar B, Piri J, Kisi O (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput Electron Agric. doi:10.1016/j.compag.2016.05.018

    Google Scholar 

  • Kisi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389:344–353. doi:10.1016/j.jhydrol.2010.06.013

    Article  Google Scholar 

  • Kontos YN, Katsifarakis KL (2012) Optimization of management of polluted fractured aquifers using genetic algorithms. Eur Water 40:31–42

    Google Scholar 

  • Labat D (2005) Recent advances in wavelet analyses: part 1. A review of concepts. J Hydrol 314:275–288. doi:10.1016/j.jhydrol.2005.04.003

    Article  Google Scholar 

  • Liu Z, Zhou P, Chen G, Guo L (2014) Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting. J Hydrol. doi:10.1016/j.jhydrol.2014.06.050

    Google Scholar 

  • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Software 15:101–124

    Article  Google Scholar 

  • Maier HR, Morgan N, Chow CWK (2004) Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environ Model Software 19:485–494. doi:10.1016/S1364-8152(03)00163-4

    Article  Google Scholar 

  • Maier HR, Kapelan Z, Kasprzyk J et al (2014) Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ Model Software 62:271–299. doi:10.1016/j.envsoft.2014.09.013

    Article  Google Scholar 

  • Michas S (2014) Applications of hydroinformatics in municipal water systems. Water Util J 8:87–91

    Google Scholar 

  • Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147. doi:10.1016/j.advwatres.2004.09.002

    Article  Google Scholar 

  • Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review. J Hydrol 514:358–377. doi:10.1016/j.jhydrol.2014.03.057

    Article  Google Scholar 

  • Noureldin A, El-Shafie A, Bayoumi M (2011) GPS/INS integration utilizing dynamic neural networks for vehicular navigation. Inf Fusion 12:48–57. doi:10.1016/j.inffus.2010.01.003

    Article  Google Scholar 

  • Sang Y-F (2013) A review on the applications of wavelet transform in hydrology time series analysis. Atmos Res 122:8–15. doi:10.1016/j.atmosres.2012.11.003

    Article  Google Scholar 

  • Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manag 26:1715–1729. doi:10.1007/s11269-012-9982-7

    Article  Google Scholar 

  • Schreider SY, Young P, Jakeman A (2001) An application of the Kalman filtering technique for streamflow forecasting in the Upper Murray Basin. Math Comput Model 33:733–743

    Article  Google Scholar 

  • Singh VP, Cui H (2015) Entropy theory for streamflow forecasting. Environ Process 2:449–460. doi:10.1007/s40710-015-0080-8

    Article  Google Scholar 

  • Spiliotis M (2014) A Particle Swarm Optimization (PSO) heuristic for water distribution system analysis. Water Util J 8:47–56

    Google Scholar 

  • Terzi Ö, Ergin G (2014) Forecasting of monthly river flow with autoregressive modeling and data-driven techniques. Neural Comput Applic 25:179–188. doi:10.1007/s00521-013-1469-9

    Article  Google Scholar 

  • Tigkas D, Christelis V, Tsakiris G (2016) Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model. Environ Process. doi:10.1007/s40710-016-0147-1

    Google Scholar 

  • Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl. doi:10.1002/met.1491

    Google Scholar 

  • Valipour M, Banihabib M, Behbahani S (2012) Monthly inflow forecasting using autoregressive artificial neural network. J Appl Sci 12:2139–2147

    Article  Google Scholar 

  • Wu JS, Han J, Annambhotla S, Bryant S (2005) Artificial neural networks for forecasting watershed runoff and stream flows. J Hydrol Eng 10:216–222

    Article  Google Scholar 

  • Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45:1–23. doi:10.1029/2007WR006737

    Article  Google Scholar 

  • Zhong H, Van Overloop PJATM, Van Gelder PHAJM, Tian X (2013) The effect of four new floodgates on the flood frequency in the Dutch lower Rhine delta. European Water Resources Association (EWRA)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitham Abdulmohsin Afan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshtegar, B., Allawi, M.F., Afan, H.A. et al. Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method. Water Resour Manage 30, 3899–3914 (2016). https://doi.org/10.1007/s11269-016-1397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1397-4

Keywords

Navigation