Skip to main content
Log in

Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

When weather data sets available for computing the reference evapotranspiration are incomplete or of questionable quality, there is the need to replace the FAO Penman-Monteith (PM-ETo) method by approaches requiring reduced sets only, particularly maximum and minimum temperature. The Hargreaves-Samani (HS) equation and the PM-ETo using only temperature data (PMT) are considered in this study and their results are compared with those of the PM-ETo using full datasets. Daily data sets refer to the period 1981–2012 and to a network of 50 meteorological stations covering the wide range of climates of Inner Mongolia. For both the PMT and HS methods, the solar radiation coefficients kRs were calibrated and have shown to be similar for both methods and to vary with climate aridity. For the PMT, the estimation of the dew point temperature (Tdew) was performed using the minimum temperature corrected for site aridity or, for humid climates, from a value near the average temperature. This improved estimation of Tdew was essential for a good performance of the PMT method in arid conditions and when temperatures are extremely low. RMSE <1 mm day−1 was obtained for both HS and PMT methods, and the modeling efficiency generally exceeded 0.85. The worse results correspond to windy and arid locations. The principal components analysis (PCA) in R-Mode have shown that the spatial variability of ETo computed with PM-ETo or with the HS and PMT methods were coherent. PCA supported the interpretation of ETo results. Overall, PMT performed better than HS for most locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106

    Article  Google Scholar 

  • Allen RG (1997) Self-calibrating method for estimating solar radiation from air temperature. J Hydrol Eng 2(2):56–67

    Article  Google Scholar 

  • Allen RG, Smith M, Perrier A, Pereira LS (1994a) An update for the definition of reference evapotranspiration. ICID Bulletin 43(2):1–34

    Google Scholar 

  • Allen RG, Smith M, Pereira LS, Perrier A (1994b) An update for the calculation of reference evapotranspiration. ICID Bulletin 43(2):35–92

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrig Drain Pap 56 FAO, Rome, 300 p

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Baselga J, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 penman-Monteith method. Agric Water Manag 81:1–22

    Article  Google Scholar 

  • Annandale JG, Jovanovic NZ, Benadé N, Allen RG (2002) Software for missing data error analysis of penman–Monteith reference evapotranspiration. Irrig Sci 21:57–67

    Article  Google Scholar 

  • Berengena J, Gavilán P (2005) Reference ET estimation in a highly advective semi-arid environment. J Irrig Drain Eng 131(2):147–163

    Article  Google Scholar 

  • Cadol D, Kampf S, Wohl E (2012) Effects of evapotranspiration on baseflow in a tropical headwater catchment. J Hydrol 462-463:4–14

    Article  Google Scholar 

  • Cai JB, Liu Y, Lei TW, Pereira LS (2007) Estimating reference evapotranspiration with the FAO penman-Monteith equation using daily weather forecast messages. Agric Forest Meteorol 145:22–35

    Article  Google Scholar 

  • Cai JB, Liu Y, Xu D, Paredes P, Pereira LS (2009) Simulation of the soil water balance of wheat using daily weather forecast messages to estimate the reference evapotranspiration. Hydrol Earth Syst Sci 13:1045–1059

    Article  Google Scholar 

  • Dai A (2011) Characteristics and trends in various forms of the palmer drought severity index during 1900–2008. J Geophys Res 116:D12115. doi:10.1029/2010JD015541

    Article  Google Scholar 

  • Eisenhauer JG (2003) Regression through the origin. Teach Stat 25:76–80

    Article  Google Scholar 

  • Estévez J, Gavilán P, Berengena J (2009) Sensitivity analysis of a penman-Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol Process 23:3342–3353

    Article  Google Scholar 

  • Feng S, Hu Q, Qian W (2004) Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int J Climatol 24:853–870

    Article  Google Scholar 

  • Garcia M, Raes D, Allen R, Herbas C (2004) Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agric Forest Meteorol 125:67–82

    Article  Google Scholar 

  • Gavilán P, Lorite IJ, Tornero S, Berengena J (2005) Regional calibration of Hargreaves equation for estimating reference ET in a semi-arid environment. Agric Water Manag 81:257–281

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2010) Software for estimating reference evapotranspiration using limited weather data. Comput Electron Agric 71:158–162

    Article  Google Scholar 

  • Gong L, Xu CY, Chen D, Halldin S, Chen YD (2006) Sensitivity of the penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J Hydrol 329:620–629

    Article  Google Scholar 

  • Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng 129(1):53–63

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Irmak S, Allen RG, Whitty EB (2003) Daily grass and alfalfa-reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida. J Irrig Drain Eng 129:360–370

    Article  Google Scholar 

  • Irmak S, Kabenge I, Skaggs KE, Mutiibwa D (2012) Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River basin, Central Nebraska–USA. J Hydrol 420–421:228–244

    Article  Google Scholar 

  • Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data application to Tunisia. Agric Water Manag 95:707–715

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Lecina S, Martınez-Cob A, Perez PJ, Villalobos FJ, Baselga JJ (2003) Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the penman-Monteith equation under semiarid conditions. Agric Water Manag 60:181–198

    Article  Google Scholar 

  • Legates DR, McCabe Jr GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241

  • Liu Y, Pereira LS (2001) Calculation methods for reference evapotranspiration with limited weather data. J Hydraulic Eng 3:11–17 (in Chinese)

    Google Scholar 

  • Liu Y, Pereira LS, Teixeira JL, Cai LG (1997) Update definition and computation of reference evapotranspiration. J Hydraulic Eng 6:27–33 (in Chinese)

    Google Scholar 

  • López-Moreno JI, Hess TM, White SM (2009) Estimation of reference evapotranspiration in a mountainous Mediterranean site using the penman-Monteith equation with limited meteorological data. Pirineos 164:7–31

    Article  Google Scholar 

  • López-Urrea R, Martín de Santa Olalla FM, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiari climate. Agric Water Manag 85:15–26

  • Majidi M, Alizadeh A, Vazifedoust M, Farid A, Ahmadi T (2015) Analysis of the effect of missing weather data on estimating daily reference evapotranspiration under different climatic conditions. Water Resour Manag 29:2107–2124

    Article  Google Scholar 

  • Mallikarjuna P, Jyothy SA, Murthy DS, Reddy KC (2014) Performance of recalibrated equations for the estimation of daily reference evapotranspiration. Water Resour Manag 28:4513–4535

    Article  Google Scholar 

  • Martí P, González-Altozano P, López-Urrea R, Mancha LA, Shiri J (2015) Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agric Water Manag 149:81–90

    Article  Google Scholar 

  • Martinez CJ, Thepadia M (2010) Estimating reference evapotranspiration with minimum data in Florida. J Irrig Drain Eng 136(7):494–501

    Article  Google Scholar 

  • Martins DS, Raziei T, Paulo AA, Pereira LS (2012) Spatial and temporal variability of precipitation and drought in Portugal. Nat Hazard Earth Syst Sci 12:1493–1501

    Article  Google Scholar 

  • McEvoy DJ, Huntington JL, Abatzoglou JT, Edward LM (2012) An evaluation of multiscalar drought indices in Nevada and eastern California. Earth Interact 16:1–18

    Article  Google Scholar 

  • Nandagiri L, Kovoor GM (2005) Sensitivity of the food and agriculture organization penman–Monteith evapotranspiration estimates to alternative procedures for estimation of parameters. J Irrig Drain Eng 131(3):238–248

    Article  Google Scholar 

  • Nandagiri L, Kovoor GM (2006) Performance evaluation of reference evapotranspiration equations across a range of Indian climates. J Irrig Drain Engi 132(3):238–249

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part I. A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Pereira LS, Cai LG, Hann MJ (2003) Farm water and soil management for improved water use in the North China plain. Irrig Drain 52:299–317

    Article  Google Scholar 

  • Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20

    Article  Google Scholar 

  • Popova Z, Kercheva M, Pereira LS (2006) Validation of the FAO methodology for computing ETo with missing climatic data. Application to South Bulgaria. Irrig Drain 55:201–215

    Article  Google Scholar 

  • Rahimikhoob A (2014) Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment. Water Resour Manag 28:657–669

    Article  Google Scholar 

  • Raziei T, Pereira LS (2013a) Estimation of ETo with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric Water Manag 121:1–18

    Article  Google Scholar 

  • Raziei T, Pereira LS (2013b) Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets. Agric Water Manag 126:104–118

    Article  Google Scholar 

  • Raziei T, Bordi I, Pereira LS (2008) A precipitation-based regionalization for western Iran and regional drought variability. Hydrol Earth Syst Sci 12:1309–1321

    Article  Google Scholar 

  • Ren X, Martins DS, Qu Z, Pereira LS (2016) Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in Inner Mongolia, China: II. Temporal variation and deterministic trends of ETo and related weather variables. Water Resour Manage. doi:10.1007/s11269-016-1385-8

  • Richman MB (1986) Rotation of principal components. Int J Climatol 6:293–335

    Article  Google Scholar 

  • Saadi S, Todorovic M, Tanasijevic L, Pereira LS, Pizzigalli C, Lionello P (2015) Climate change and Mediterranean agriculture: impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric Water Manag 147:103–115

    Article  Google Scholar 

  • Samani Z (2000) Estimating solar radiation and evapotranspiration using minimum climatological data. J Irrig Drain Eng 126:265–267

    Article  Google Scholar 

  • Samani Z (2004) Discussion of “history and evaluation of Hargreaves evapotranspiration equation” by George H Hargreaves and Richard G Allen. J Irrig Drain Eng 130:447–448

    Article  Google Scholar 

  • Sharma S (1996) Applied Multivariate Techniques. John Wiley & Sons, New York, p. 512

    Google Scholar 

  • Smith M, Allen R, Monteith J, Perrier A, Pereira LS, Segeren A (1991) Report of the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. UN-FAO, Rome, Italy, 54p

  • Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013) Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through weather research and forecasting model. Atmos Sci Lett 14:118–125

    Article  Google Scholar 

  • Temesgen B, Allen RG, Jensen DT (1999) Adjusting temperature parameters to reflect well-watered conditions. J Irrig Drain Eng 125:26–33

    Article  Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131:73–84

    Article  Google Scholar 

  • Thomas A (2008) Development and properties of 0.25-degree gridded evapotranspiration data fields of China for hydrological studies. J Hydrol 358:145–158

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Todorovic M (1999) Single-layer evapotranspiration model with variable canopy resistance. J Irrig Drain Eng 125:235–245

    Article  Google Scholar 

  • Todorovic M, Karic B, Pereira LS (2013) Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J Hydrol 481:166–176

    Article  Google Scholar 

  • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131:316–323

    Article  Google Scholar 

  • Trajkovic S (2007) Hargreaves versus penman-Monteith under humid conditions. J Irrig Drain Eng 133:38–42

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23:3057–3067

    Article  Google Scholar 

  • UNEP (1997) World atlas of desertification, 2nd edn. United Nations Environment Programme, Arnold, London, 182 p

  • Valiantzas JD (2013) Simplified forms for the standardized FAO-56 penman–Monteith reference evapotranspiration using limited weather data. J Hydrol 505:13–23

    Article  Google Scholar 

  • Vangelis H, Tigkas D, Tsakiris G (2013) The effect of PET method on reconnaissance drought index (RDI) calculation. J. Arid Environ 88:130–140

    Article  Google Scholar 

  • Ventura F, Spano D, Duce P, Snyder RL (1999) An evaluation of common evapotranspiration equations. Irrig Sci 18:163–170

    Article  Google Scholar 

  • Wang SF, Wang SS, Duan AW, Liu ZD, Luo CQ (2010) Evaluation on several methods for estimating ETo and modified Hargreaves formulas. J Irrig Drain 29(6):29–33 (in Chinese)

    Google Scholar 

  • Wen X, Si J, He Z, Wu J, Shao H, Yu H (2015) Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resour Manag 29:3195–3209

    Article  Google Scholar 

  • Xu J, Wang J, Wei Q, Wang Y (2016) Symbolic regression equations for calculating daily reference evapotranspiration with the same input to Hargreaves-Samani in arid China. Water Resour Manag 30:2055–2073

    Article  Google Scholar 

  • Yan H, Shi H, Xue Z, Zhang Y, Liu H (2008) Comparison of estimating ETo with different methods in Hetao Irrigation District in Inner Mongolia. Trans Chinese Society Agric Eng 24(4):103–106 (in Chinese)

    Google Scholar 

  • Yang F, Zhou G (2011) Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China. J Hydrol 396:139–147

    Article  Google Scholar 

  • Ye J, Guo A, Sun G (2009) Statistical analysis of reference evapotranspiration on the Tibetan plateau. J Irrig Drain Eng 135:134–140

    Article  Google Scholar 

  • Yoder RE, Odhiambo LO, Wright WC (2005) Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States. Appl Eng Agric 21:197–202

    Article  Google Scholar 

  • Zheng X, Zhu J (2015) Temperature-based approaches for estimating monthly reference evapotranspiration based on MODIS data over North China. Theor Appl Climatol 121:695–711

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Ministry of Education Innovation Team Development Plan (No: IRT13069), and the Project of National Natural Science Fund (NO: 51069006). The authors thank the Chinese Meteorological Data Sharing Service Network for providing the meteorological data used in this study. This study was partially supported by the Portuguese Foundation for Science and Technology through the project PTDC/GEO-MET/3476/2012. The third author acknowledges the PhD research grant SFRH/BD/92880/2013 and the Post-Doc research grant (SFRH/BPD/102478/2014) awarded to the fourth author is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyi Qu or Luis S. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Qu, Z., Martins, D.S. et al. Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability. Water Resour Manage 30, 3769–3791 (2016). https://doi.org/10.1007/s11269-016-1384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1384-9

Keywords

Navigation