Skip to main content
Log in

Enhancing Knowledge in Water Distribution Networks via Data Assimilation

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This paper deals with uncertainty estimation and knowledge enhancement in water distribution networks (WDNs). A new three steps data assimilation approach is introduced, which in combination with multi-objective optimization, allows selecting effective and affordable monitoring networks. An innovative cascade of Ensemble Kalman Filters is used to assimilate the information deriving from sensors measuring pressure heads, flow in pipes and demands, with the objective of increasing knowledge while preserving at the same time the structural relationships among state variables. Selection of the most appropriate and economically affordable measurement network, is then based on the derivation of a Pareto front using the NSGA-II algorithm in conjunction with the data assimilation approach. The front is obtained by compromising between the overall sensors cost and the uncertainty reduction (or knowledge enhancement), which is expressed as a function of the Total Variance of state variables. The operational use of the proposed data assimilation approach as well as the effectiveness of the chosen observation network is also demonstrated by showing the reduction of uncertainty deriving from successive assimilations of real-time observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvisi S, Franchini M (2015) Assessment of predictive uncertainty within the framework of water demand forecasting using the model conditional processor (MCP). Urban Water J. doi:10.1080/1573062X.2015.1057182

    Google Scholar 

  • Artina S, Bolognesi A, Bragalli C, D’Ambrosio C, Marchi A (2011) Comparison among best solutions of the optimal design of water distribution networks obtained with different algorithms. CCWI 2011 Urban Water Management: challenges and opportunities 3: 985-990, Exeter, ISBN: 0953914089

  • Basseville M, Benveniste A, Chou KC, Golden SA, Nikoukhah R, Willsky A (1992) Modeling and estimation of multiresolution stochastic processes. IEEE Trans Inf Theory 38(2):766–784

    Article  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer-Verlag, New York ISBN 0-387-96098-8. MR 0804611

    Book  Google Scholar 

  • Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, Chichester

  • Chou K C (1991) A stochastic approach to multiscale signal processing. PhD dissertation, Massachusetts Institute of Technology. http://ssg.mit.edu/ssg_theses/ssg_theses_1974_1999/Chou_PhD_5_91.pdf

  • Cross H (1936) Analysis of flow in networks of conduits or conductors, Bulletin No. 286, Engineering Experiment Station. Univ. of Illinois, Urbana

    Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research, InterJournal, Complex Systems 1695. http://igraph.sf.net

  • De Groot M (2004) Optimal Statistical Decisions. Wiley Classics Library (Originally published 1970), ISBN 0–471-68029-X

  • Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist Multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deng JL (1982) Control problems of Grey systems. Syst Control Lett 5:288–294

    Google Scholar 

  • Dini M, Tabesh M (2014) A new method for simultaneous calibration of demand pattern and Hazen-Williams coefficients in water distribution systems. Water Resour Manag 28:2021–2034

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  • Fiorini Morosini A, Costanzo F, Veltri P, Savić D (2014) Identification of measurement points for calibration of water distribution network models. Procedia Eng 89:693–701 16th Conference on Water Distribution System Analysis, WDSA 2014

    Article  Google Scholar 

  • Fortini M, Bragalli C, Artina S (2014) Identifying the High-Level Flow Model of Water Distribution Networks Using Graph Theory, 16th Conference on Water Distribution System Analysis (WDSA). http://www.sciencedirect.com/science/article/pii/S1877705814023649. https://github.com/mfortini/pyepanet2

  • Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Proc Inst Elect Eng, F 140(2):107–113

    Google Scholar 

  • Hashimoto T, Loucks DP, Stedinger J (1982) Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour Res 18(1):14–20

    Article  Google Scholar 

  • Hutton C, Kapelan Z, Vamvakeridou-Lyroudia L, Savić D (2014a) Dealing with uncertainty in water distribution system models: a framework for real-time modeling and data assimilation. J Water Resour Plan Manag 140(2):169–183

    Article  Google Scholar 

  • Hutton CJ, Kapelan Z, Vamvakeridou-Lyroudia L, Savić D (2014b) Application of formal and informal Bayesian methods for water distribution hydraulic model calibration. J Water Resour Plann Manage. doi:10.1061/(ASCE)WR.1943-5452.0000412 04014030

    Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, New York

    Google Scholar 

  • Julier S, Uhlmann J K (1997) A new extension of the Kalman filter to nonlinear systems. Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(Series D):35–45

    Article  Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. Trans ASME J Basic Eng 83:95–108

    Article  Google Scholar 

  • Kapelan SZ, Savić D, Walters GA (2005) Optimal sampling design methodologies for water distribution model calibration. J Hydraul Eng 131(3):190–200

    Article  Google Scholar 

  • Kozelj D, Kapelan Z, Novak G, Steinman F (2014) Investigating prior parameter distributions in the inverse modelling of water distribution hydraulic models. Strojniški vestnik. J Mech Eng 60(11):725–734

    Article  Google Scholar 

  • Kun D, Tian-Yu L, Jun-Hui W, Jin-Song G (2015) Inversion model of water distribution systems for nodal demand calibration. J Water Resour Plann Manage. doi:10.1061/(ASCE)WR.1943-5452.0000506 04015002

    Google Scholar 

  • Lai R, Fang H, He G (2013) Dual state-parameter optimal estimation of one-dimensional open channel model using ensemble Kalman filter. J Hydroinf 25(4):564–571

    Google Scholar 

  • Mahler H C, Dean C G (2001) Chapter 8: Credibility In Foundations of Casualty Actuarial Science (4th ed.). Casualty Actuarial Society. pp. 525–526. ISBN 978–0–96247-622-8

  • McElhoe B A (1966) An assessment of the navigation and course corrections for a manned flyby of Mars or Venus. IEEE Trans Aerosp Electron Syst AES-2(4):613–623

  • Mehdi D, Tabesh M (2014) A new method for simultaneous calibration of demand pattern and Hazen-Williams coefficients in water distribution systems. Water Resour Manag 28:2021–2034. doi:10.1007/s11269-014-0592-4

    Article  Google Scholar 

  • Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147

    Article  Google Scholar 

  • Okeya I, Kapelan Z, Hutton C, Naga D (2014) Online modelling of water distribution system using data assimilation. Procedia Eng 70:1261–1270

    Article  Google Scholar 

  • Poulakis Z, Valougeorgis D, Papadimitriou C (2003) Leakage detection in water pipe networks using a Bayesian probabilistic framework. Probab Eng Mech 18:315–327

    Article  Google Scholar 

  • Rauch H, Tung F, Striebel C (1965) Maximum likelihood estimates of linear dynamic systems. AIAA J 3(8):1445–1450

    Article  Google Scholar 

  • Rossman L A (2000) EPANET 2 users manual. Rep. No. EPA/600/ R-00/057, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati.

  • Rougier J (2005) Probabilistic leak detection in pipelines using the mass imbalance approach. J Hydraul Res 43(5):556–566

    Article  Google Scholar 

  • Sanz G, Pèrez R (2014) Demand pattern calibration in water distribution networks. Procedia Eng 70:1495–1504 Proc. 12th International Conference on Computing and Control for the Water Industry, CCWI2013

    Article  Google Scholar 

  • Sanz G, Pèrez R (2015) Sensitivity analysis for sampling design and demand calibration in water distribution networks using the singular value decomposition. J Water Resour Plann Manage 140(10). doi:10.1061/(ASCE)WR.1943-5452.0000535 04015020

  • Smith GL, Schmidt SF, McGee LA (1962) Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. NASA Technical Report R-135, USA

    Google Scholar 

  • Todini E (1978a) Mutually interactive state/parameter estimation (MISP) in hydrological applications. In: Vansteenkiste GC (ed) Identification and control in environ-mental systems. Elsevier, New York

    Google Scholar 

  • Todini E (1978b) Mutually interactive state/parameter estimation (MISP). In: Chiu C-L (ed) Application of Kalman filter to hydrology, hydraulics and water resources. Univ. of Pittsburgh, Pittsburgh, pp. 135–150

    Google Scholar 

  • Todini E, Pilati S (1988) A gradient algorithm for the analysis of pipe networks. In: Computer applications in water supply, vol 1—systems analysis and simulation. Research Studies Press Ltd., Letchworth, Hertfordshire, pp 1–20

  • Todini E, Rossman L (2013) Unified framework for deriving simultaneous equation algorithms for water distribution networks. J Hydraul Eng 139(5):511–526

    Article  Google Scholar 

  • van der Merwe R, de Freitas JFG, Doucet A, Wan E (2000) The unscented particle filter, Tech. Rep. CUED/F- INFENG/TR 380. Cambridge Univ. Engineering Dept., Cambridge

    Google Scholar 

  • Wagner JM, Shamir U, Marks DH (1988) Water distribution reliability: simulation methods. J Water Resour Plan Manag 114(3):276–294

    Article  Google Scholar 

  • Wan E, van der Merwe R (2001) The unscented Kalman filter. In: S. H (ed) Kalman filtering and neural networks (chap. 7). Wiley, New York

    Google Scholar 

  • Weiss NA (2006) A course in probability. Addison–Wesley, Boston, pp. 385–386

    Google Scholar 

  • Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York ISBN 0–262–73005-7

    Google Scholar 

  • Wu ZY, Clark C (2009) Evolving effective hydraulic model for municipal water systems. Water Resour Manag 23:117–136. doi:10.1007/s11269-008-9267-3

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Todini.

Appendix

Appendix

H :

nodal pressure heads vector

H 0 :

known nodal pressure heads vector

Q :

pipe flows vector

q :

nodal demands vector

q j :

nodal demands ensemble based on prior assumptions

\( {\mathbf{H}}_{\left|{\mathbf{q}}_j\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j\right.} \) :

the value of state vectors H and Q given q j

\( {\mathbf{H}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H\right.},{\mathbf{q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H\right.} \) :

the value of state vectors H, Q and q given q j and measures z H

\( {\mathbf{H}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q\right.},{\mathbf{q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q\right.} \) :

the value of state vectors H, Q and q given q j and measures z H and z Q

\( {\mathbf{H}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q,{\mathbf{z}}_q\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q,{\mathbf{z}}_q\right.},{\mathbf{q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q,{\mathbf{z}}_q\right.} \) :

the value of state vectors H, Q and q given q j and measures z H , z Q and z q

A 11 :

diagonal matrix defined as in Todini and Pilati (1988)

A 12, A 21, A 10 :

(0,1) topological incidence matrices defined as in Todini and Pilati (1988)

\( {\boldsymbol{\upmu}}_H,{\boldsymbol{\upmu}}_Q,{\boldsymbol{\upmu}}_Q^{\hbox{'}} \) :

vectors of means of \( {\mathbf{H}}_{\left|{\mathbf{q}}_j\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q\right.} \) estimation errors

\( {\mathbf{P}}_H,{\mathbf{P}}_Q,{\mathbf{P}}_Q^{\hbox{'}} \) :

variance-covariance matrices of \( {\mathbf{H}}_{\left|{\mathbf{q}}_j\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q\right.} \) estimation errors

\( {\mathbf{K}}_H,{\mathbf{K}}_Q,{\mathbf{K}}_Q^{\hbox{'}} \) :

Kalman Gain matrices for state vectors \( {\mathbf{H}}_{\left|{\mathbf{q}}_j\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H\right.},{\mathbf{Q}}_{\left|{\mathbf{q}}_j,{\mathbf{z}}_H,{\mathbf{z}}_Q\right.} \)

z H  , z Q  , z q :

vectors of measures relevant to state vectors H, Q and q

M H  , M Q  , M q  :

(0,1) topological matrices relating z H to H, z Q to Q and z q to q

\( {\overset{-}{\mathbf{v}}}_{{\mathbf{z}}_H},{\overset{-}{\mathbf{v}}}_{{\mathbf{z}}_Q},{\overset{-}{\mathbf{v}}}_{{\mathbf{z}}_q} \) :

vectors of mean of measurement errors for state vectors H, Q and q

\( {\mathbf{R}}_{{\mathbf{z}}_H},{\mathbf{R}}_{{\mathbf{z}}_Q},{\mathbf{R}}_{{\mathbf{z}}_q} \) :

variance-covariance matrices of measurement errors for state vectors H, Q and q

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragalli, C., Fortini, M. & Todini, E. Enhancing Knowledge in Water Distribution Networks via Data Assimilation. Water Resour Manage 30, 3689–3706 (2016). https://doi.org/10.1007/s11269-016-1372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1372-0

Keywords

Navigation