In low lying regions with shallow saline groundwater, such as in deltaic areas or small islands, saline water may enter the root zone due to capillary upward flow of groundwater. In case the annual rainfall is sufficient, precious fresh water lenses may develop preventing the underlying saline groundwater to reach the root zone via capillary rise. Experimental evidence of fresh water lenses on saline groundwater has been provided for different continents, e.g. De Louw et al. (2011), Fetter (1972), Underwood et al. (1992), even for inland areas of Australia (Jolly et al. 1998; Cendón et al. 2010), Oman (Young et al. 2004) and Hungary (Szabolcs 1989; Toth 2008). Whether or not a fresh water lens protects primary production from salt induced yield depressions will depend on the persistence of such lenses in temperate climates in the dry season (often summer).
Fresh water lenses resemble large fresh water volumes in coastal dune areas (Martinez and Psuty 2008) and analytical solutions have been found for different assumptions regarding e.g. the outflow zone at the dunes’ perifery, or whether or not the salt underlying water is flowing, assuming a sharp fresh/salt interface (Badon-Ghijben 1888; Herzberg 1901; Van Der Veer 1977; Maas 2007). Investigating fresh water lenses in low-lying flat coastal regions, Eeman et al. (2011) revealed that the analytical solution provided by Maas (2007) is in close agreement with their numerical modelling using the model SUTRA-3D. The solution of Maas is given by:
$$ \sqrt{\frac{Z^2}{\left({L}^2+{Z}^2\right)}}=\left[-\frac{S}{P}+\sqrt{{\left(\frac{S}{P}\right)}^2+4\left(1+\frac{S}{P}+R\right)}\right]/\left[2\left(1+\frac{S}{P}+R\right)\right] $$
(1)
where S is upward seepage rate [LT−1], P is mean net precipitation or infiltration rate [LT−1], R is the Rayleigh number (R = κgΔρ/(μP) with intrinsic permeability κ [L2], gravity acceleration g [LT−2], density difference Δρ [M/L3], and dynamic viscosity μ [ML−1T−1], L is the half spacing [L] between two drains or ditches, i.e., the distance from drain or ditch to hydrological divide, and Z is the largest thickness of the lens at the hydrological divide. For such a lens, the volume V
M
[L3] is equal to
$$ {V}_M=\frac{1}{4}\pi LZ $$
(2)
The impact for upward seepage S in (1) is a crucial one, as it is a major force that counters the development of a full Badon-Ghijben-Herzberg (BGH) lens that complies with Archimedes’ law. Especially this occurs for low lying areas in e.g. delta regions, as in Dutch polders (De Louw et al. 2011, 2013) or the Po delta, Italy (Vandenbohede et al. 2014). In the absence of such seepage, other (simpler) solutions are available that are outside the scope of this paper, as here we are focusing on lowland areas with upward saline seepage rather than coastal dunes, where groundwater flow is predominantly downward and BGH lens thicknesses of tens of meters can develop.
For the case that the groundwater densities of the lens and the underlying groundwater are equal, the solution follows directly from (1) by setting the Rayleigh number equal to zero, giving for the right hand side (1 + S/P)−1. Such a situation is often found in topographically higher areas with upwelling fresh groundwater as in stream valleys (Cirkel et al. 2014). Then, lens thickness thicker than those for sea water salinity circumstances are found. From (1), we then obtain for any value of R, an expression for Z:
$$ Z=\surd \left({L}^2\left[\frac{F^2}{1-{F}^2}\right]\right);\kern0.24em F=\left\{-m+\sqrt{m^2+4r}\right\}/2r;\kern0.24em m=\frac{S}{P};\kern0.24em r=1+m+R $$
(3)
Impressions of lens properties are given for different parameter combinations in Fig. 1 for a seepage/recharge ratio S/P = 1, and a permeability κ = 10−12 m2 which is equivalent to a hydraulic conductivity of about 1 m/day (K = κρg/μ). Lens thickness Z is proportional to the half distance between drains or ditches L and increases as the water density Δρ differences between lens and groundwater become smaller in agreement with a BGH lens.
Recognizing that both the lens thickness and the mixing zone thickness are important for the risk that brackish water from the mixing zone moves up by capillary rise into the root zone, an alternative to numerically estimating the critical mixing zone thickness is appealing. Based on the analysis of Cirkel et al. (2015) this thickness can be estimated easily. We consider a lens of thickness Z where half of the mixing zone is situated in the lens, and the other half is in the saline groundwater below the lens.
This half thickness (σ
Z
) can also be represented by the variance or second central spatial moment of vertical salt concentration change
$$ {\sigma}_z^2=2{\alpha}_L\left\langle \left|{v}_z\right|\right\rangle t $$
(4)
In (4), α
L
is the longitudinal dispersivity [L2] and in view of recent insights by Eeman et al. (2012) and Cirkel et al. (2015), we may interpret 〈|v
z
|〉t as the total distance that the mixing zone travels during one year (lens growing in winter, diminishing in summer). If the lens disappears at the end of each drought period and the fluctuation of the mixing zone is sinusoidal, the amplitude of vertical transition zone position is equal to Az = Z. This leads to 〈|v
z
|〉 = 4A
z
f where f is the seasonal frequency. We then obtain from (4)
$$ {\sigma}_z=\sqrt{8{\alpha}_L{A}_z}=\sqrt{8{\alpha}_LZ} $$
(5)
In Fig. 1b we show how σ
Z
increases as a function of lens thickness if the longitudinal dispersivity α
L
increases. As these figures show, for relatively thin lenses, their thickness can be of the same order of magnitude as that of the mixing zone, which means that the water lens contains significant amounts of salts. This is also seen from the thickness of fresh water zone, when the mixing zone thickness within the lens, σ
Z
, is subtracted from the lens thickness Z. In Fig. 1c, Z-σ
Z
is shown as a function of Z and for different longitudinal dispersivities. For thin lenses, the lens may become brackish throughout, as is implied by the negative values of Z-σ
Z
. This was also found by field measurements in the south-western Dutch delta which showed that almost all rainwater lenses lacked truly fresh water (De Louw et al. 2011). Since the lens thickness represents a volume of water, it is possible to assess for which thicknesses of the lens it will disappear as a function of rainfall deficit ET-P, longitudinal dispersivity α
L
, and specific yield s
y
(taken to be 0.1). For the Netherlands, a cumulative rainfall deficit of 200 mm is not uncommon, hence, lenses of 3–4 m thickness may disappear to such a degree, that brackish water can reach the root zone by capillary rise. With this in mind, we show in Fig. 1e, how the rainfall deficit for which the lens disappears will depend on the distance L between drain and middle of the field, and the ratio of seepage and recharge (S/P, see Eq. 1). It is clear, that for the chosen parameters and a reasonable rainfall deficit, this is mostly the case for small fields and relatively large seepage rates. Underlying reason is that stronger upward groundwater seepage (S) forces the interface between fresh and salt water upwards, i.e., leads to small Z-values. Such a combination may represent a wetland under native vegetation rather than an agricultural field. If, however, predictions for a substantial sea water level rise become true, this inevitably causes an increase in upward seepage (Oude Essink et al. 2010).
A factor that is somewhat hidden in the illustrations is the soil type. This can be illustrated with Fig. 1f that shows how the rainfall deficit, where the lens disappears, depends on both half spacing (L) and the soil hydraulic conductivity. Realistic values may be reached with high hydraulic conductivities or small L-values. In practice, ditch distances depend on the hydraulic conductivity of the soil, with smaller conductivities meaning smaller L-values, but also on desired drainage levels. In Fig. 2, the lenses are shown for a clayey and for a peaty soil. Despite its larger conductivity, fields in peat soil are often more densely drained, in order to more accurately fix groundwater levels. If groundwater levels were allowed to fall significantly in peat, this might lead to mineralization of peat, irreversible consolidation and land subsidence. As Fig. 2 shows, good control of groundwater level by intense drainage results in a thin and vulnerable fresh water lens. In our calculations it has not been taken into account that soil type may affect net infiltration, as larger hydraulic conductivities favour a large net infiltration rate, hence thicker fresh water lenses (De Louw et al. 2011). This may mean that in practice, the total salinization threshold differences between different soil types are slightly smaller than represented in Fig. 1f.
With results as in Fig. 1, it is also easy to see what the risk is that a lens will disappear completely during a dry period if we consider climate change projections. In the next decades, the average rainfall deficit in summer may increase from 144 to 187 mm in 2050, with 10-year extremes of 288 mm (KNMI 2014). This implies that lenses with a thickness of 0.25 m/s
y
= 2.5 m (for our default parameter values) may regularly disappear. A record dry year was 1976, in which the rainfall deficit grew to 360 mm, and for a specific yield of 0.1, even lenses of 3.6 m thick might disappear.
The approximations of Fig. 1 are somewhat crude, because under water and salt stress, plants will cease to transpire at the potential rate. At which concentrations salt stress occurs depends on both crop and genotype. Also regarding evaporation from the bare soil surface, it is unlikely to continue at maximum rate as drought sets in. Instead, a drying front may cause a rapid decline of evaporation as soil dries out. In addition, water that flows upward from the declining fresh water lens towards the root zone will take time to travel that distance. This time is important in view of the frequency with which significant rainfall occurs, as such showers may leach salt that is underway. In other words, characteristic times of rainfall and water travel times between saturated groundwater and root zone become important. This is even more so the case if cumulative effects over years can be anticipated, e.g. due to summers that become drier due to climate change. For instance, a rainfall deficit requires time to be balanced by a rainfall excess, yet during this time, discharge to drains and ditches continues to remove fresh water. Accordingly, the risk of a succession of different dry summers is probably a factor to be accounted for.
Although simplifications have been made on the reaction of fresh water lenses to erratic rainfall, this is not the case with regard to the impact of erratic rainfall on the fresh/salt mixing zone. High frequency variations of lens recharge may affect the thickness of the lens and therefore the value of Z, but these variations do not affect the validity of (4) and (5), as was demonstrated (Cirkel et al. 2014).