Skip to main content

Advertisement

Log in

On the Value of Hydrological Models Developed in the Context of Undergraduate Education for Discharge Prediction and Reservoir Management

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

A conceptual hydrological catchment model called ‘student model’ is introduced which has been interactively developed within an undergraduate course on hydrological modelling at Siegen University (BSc Civil Engineering). After successful model calibration and model validation to a German mesoscale catchment, the ‘student’ model is applied to quantify the impact of regional climate change scenarios on the water budget of the Wiehl drinking water reservoir. The simulation results show that the conceptual ‘student model’ performs well for both calibration and validation periods. It well represents the variability in water flows at different timescales and therefore has the potential to be used for scenario analysis. The ‘student model’ shows a comparable reaction to climate change scenarios as sophisticated hydrological catchment models did which were applied to neighboured catchments in North Rhine-Westphalia based on the same underlying parent scenarios. The magnitude of the simulated climate impacts on seasonal water balances and extreme flows indicates that current reservoir management needs to be adjusted to the projected variability of inflows to the reservoir. Despite its simplicity, the ‘student model’ can have a high value for reservoir management. It well represents the inflow into the reservoir based on available data and provides a reliable estimate of climate change impacts, indicating the necessity of adjustment of the operation rules in the future. At the same time it remains transparent to the model users, offering a simple but realistic training tool for the generation of reservoir inflow time series. It therefore can contribute to the solution of recent hydrological and water management problems. Restrictions of such models are due to the lumped nature and the limited applicability for a priori predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AghaKouchak A, Habib E (2010) Application of a conceptual hydrologic model in teaching hydrologic processes. Int J Engng Ed 26(4):1–11

    Google Scholar 

  • AghaKouchak A, Nakhjiri N, Habib E (2013) An educational model for ensemble streamflow simulation and uncertainty analysis. Hydrol Earth Syst Sci 17:445–452

    Article  Google Scholar 

  • Alfieri L, Pappenberger F, Wetterhall F, Haiden T, Richardson D, Salamon P (2014) Evaluation of ensemble streamflow predictions in Europe. J Hydrol 517:913–922

    Article  Google Scholar 

  • Alvarez UFH, Trudel M, Leconte R (2014) Impacts and adaptation to climate change using a reservoir management tool to a northern watershed: application to Lièvre river watershed, Quebec, Canada. Water Resour Manag 28(11):3667–3680

    Article  Google Scholar 

  • Alves JMB, Campos JNB, Servain J (2012) Reservoir management using coupled atmospheric and hydrological models: the Brazilian semi-arid case. Water Resour Manag 26:1365–1385

    Article  Google Scholar 

  • Beskow S, Norton LD, Mello CR (2013) Hydrological prediction in a tropical watershed dominated by oxisols using a distributed hydrological model. Water Resour Manag 27:341–363

    Article  Google Scholar 

  • Beven KJ (2000) Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Syst Sci 4(2):203–213

    Article  Google Scholar 

  • Bormann H (2009) Analysis of possible impacts of climate change on the hydrological regimes of different regions in Germany. Adv Geosci 21:3–11

    Article  Google Scholar 

  • Bormann H, Ahlhorn F, Klenke T (2012) Adaptation of water management to regional climate change in a coastal region – Hydrological change vs. community perception and strategies. J Hydrol 454–455:64–75

    Article  Google Scholar 

  • Bormann H, Andersen Martinez IM (2014) Towards an indicator based framework analysing the suitability of existing dams for energy storage. Water Resour Manag 28:1613–1630

    Article  Google Scholar 

  • Bormann H, Diekkrüger B, Richter O (1996) Effects of data availability on estimation of evapotranspiration. Phys Chem Earth 21(3):171–175

    Article  Google Scholar 

  • Breuer L, Huisman JA, Willems P, Bormann H, Bronstert A, Croke BFW, Frede HG, Gräff T, Hubrechts L, Jakeman AJ, Kite G, Leavesley G, Lanini J, Lettenmaier DP, Lindström G, Seibert J, Sivapalan MG, Viney NR (2009) Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) I: model intercomparison of current land use. Adv Water Resour 32:129–146

    Article  Google Scholar 

  • Caspari O (2013) Anpassung der Bewirtschaftung von Trinkwasser-Talsperren in NRW an den Klimawandel auf Basis von Klimaszenarien und Modellsimulationen am Beispiel der Wiehl-Talsperre. Bachelor thesis. University of Siegen. 85 p

  • Elfert S, Bormann H (2010) Simulated impact of past and possible future land use changes on the hydrological response of the northern German lowland Hunte catchment. J Hydrol 383:245–255

    Article  Google Scholar 

  • Haude W (1955) Zur Bestimmung der Verdunstung auf möglichst einfache Weise. Mitt. Dt. Wetterd. 2 (11), Bad Kissingen (DWD)

  • Holländer HM, Bormann H, Blume T, Buytaert W, Chirico GB, Exbrayat JF, Gustafsson D, Hölzel H, Krauße T, Kraft P, Stoll S, Blöschl G, Flühler H (2014) Impact of modellers’ decisions on hydrological a priori predictions. Hydrol Earth Syst Sci 18:2065–2085

    Article  Google Scholar 

  • IPCC (2000) Emission scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, UK, 612 p

  • IPCC (2007) Climate Change 2007 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press

  • Johnston R, Smakhtin V (2014) Hydrological modeling of large river basins: how much is enough? Water Resour Manag 28:2695–2730

    Article  Google Scholar 

  • Kinzli K, Gensler D, DeJonge K, Oad R, Shafike N (2014) Validation of a decision support system for improving irrigation system performance. J Irrig Drain E-ASCE. doi:10.1061/(ASCE)IR.1943-4774.0000829

    Google Scholar 

  • Kropp J, Holsten A, Lissner T, Roithmeier O, Hattermann F, Huang S, Rock J, Wechsung F, Lüttger A, Pompe S, Kühn I, Costa L, Steinhäuser M, Walther C, Klaus M, Ritchie S, Metzger M (2009) “Klimawandel in Nordrhein-Westfalen - Regionale Abschätzung der Anfälligkeit ausgewählter Sektoren”. Abschlussbericht des Potsdam-Instituts für Klimafolgenforschung (PIK) für das Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz Nordrhein-Westfalen (MUNLV). Available under www.umwelt.nrw.de/umwelt/pdf/abschluss_pik_0904.pdf (date of access: 25 Oct 2014).

  • Minville M, Brissette F, Krau S, Leconte R (2009) Adaptation to climate change in the management of a Canadian water-resources system exploited for hydropower. Water Resour Manag 23(14):2965–2986

    Article  Google Scholar 

  • MKULNV (2009) Anpassung an den Klimawandel – Eine Strategie für Nordrhein-Westfalen. Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen. Düsseldorf

  • MKULNV (2011) Klimawandel und Wasserwirtschaft – Maßnahmen und Handlungskonzepte in der Wasserwirtschaft zur Anpassung an den Klimawandel. Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen. Düsseldorf.

  • Moriasi DN, Arnold JG, Liew MWV, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I - a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Pande S, Savenije HHG, Bastidas LA, Gosain AK (2012) A parsimonious hydrological model for a data scarce dryland region. Water Resour Manag 26:909–926

    Article  Google Scholar 

  • Pathirana A, Koster JH, de Jong E, Uhlenbrook S (2012) On teaching styles of water educators and the impact of didactic training. Hydrol Earth Syst Sci 16:3677–3688

    Article  Google Scholar 

  • Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Process 16:1137–1150

    Article  Google Scholar 

  • Ravazzani G, Barbero S, Salandin A, Senatore A, Mancini M (2014) An integrated hydrological model for assessing climate change impacts on water resources of the upper Po river basin. Water Resour Manag. doi:10.1007/s11269-014-0868-8

    Google Scholar 

  • Refsgaard JC, Storm B (1996) Construction, calibration and validation of hydrological models. In: Abbott MB, Refsgaard JC (eds) Distributed hydrological modelling. Kluwer. Doordrecht, The Netherlands, pp 41–54

    Google Scholar 

  • Richter KG, Schlaffer S, Chomoev E, Hunger M (2009) Untersuchung zur Auswirkung des Klimawandels Auf das Abflussverhalten in Gewässern in NRW. Erläuterungsbericht. Auftraggeber: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Available under: www.umwelt.nrw.de/umwelt/pdf/klimawandel/abfluss_studie.pdf (date of access: 25 Oct 2014).

  • Riley D (1990) Learning about systems by making models. Comput Educ 15(1–3):255–263

    Article  Google Scholar 

  • Seibert J, Vis MJP (2012) Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol Earth Syst Sci 16:3315–3325

    Article  Google Scholar 

  • Straub W, Sträter E, Wurzler S (2010) Die Klimaentwicklung in NRW. Projektionen für das 21. Jahrhundert. Natur NRW 2(10):35–37

    Google Scholar 

  • Thompson SE, Ngambeki I, Troch PA, Sivapalan M, Evangelou D (2012) Incorporating student-centered approaches into catchment hydrology teaching: a review and synthesis. Hydrol Earth Syst Sci 16:3263–3278

    Article  Google Scholar 

  • Wagener T, McIntyre N (2007) Tools for teaching hydrological and environmental modeling. Comput Educ J 17(3):16–26

    Google Scholar 

Download references

Acknowledgments

We thank three groups of students taking actively part in the hydrological modelling courses at Siegen University and contributing to the motivation to write this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Bormann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bormann, H., Caspari, O. On the Value of Hydrological Models Developed in the Context of Undergraduate Education for Discharge Prediction and Reservoir Management. Water Resour Manage 29, 3569–3584 (2015). https://doi.org/10.1007/s11269-015-1015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1015-x

Keywords

Navigation