Assessing the Energetic and Environmental Impacts of the Operation and Maintenance of Spanish Sewer Networks from a Life-Cycle Perspective


The environmental impacts resulting from sewer networks are best analysed from a life-cycle perspective to integrate the energy requirements into the infrastructure design. The energy requirements for pumping wastewater depend on the configuration of the city (e.g., climate, population, length of the sewer, topography, etc.). This study analyses and models the effect of such site-specific features on energy consumption and related effects in a sample of Spanish cities. The results show that the average annual energy used by sewers (6.4 kWh/capita and 0.014 kWh/m3 of water flow) must not be underestimated because they may require up to 50 % of the electricity needs of a typical treatment plant in terms of consumption per capita. In terms of Global Warming Potential, pumping results in an average of 2.3 kg CO2eq./capita. A significant positive relationship was demonstrated between the kWh consumed and the length of the sewer and between other factors such as the population and wastewater production. In addition, Atlantic cities can consume 5 times as much energy as Mediterranean or Subtropical regions. A similar trend was shown in coastal cities. Finally, a simple predictive model of the electricity consumption was presented that considers the analysed parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Abril P, Argemí R (2009) Application of an energy saving and efficiency programme to wastewater treatment plants: methodology and first results (Aplicació del programa d’estalvi i eficiència energética a les estacions de depuració d’aigües residuals: metodologia i primers resultats). IV Jornades tècniques de gestió de sistemes de sanejament d’aigües residuals. Volum de Ponències, Generalitat de Catalunya

  2. AEMET. Spanish National Meteorological Agency (2013) Standard climate values. Accessed Nov 2013

  3. Augas de Galicia. Xunta de Galicia (2011) Annex III: Water use and demand. Galicia-Costa Hydrological Demarcation (Anejo III: Usos y demandas de agua. Demarcación Hidrográfica de Galicia-Costa). Accessed Jan 2014

  4. Barjoveanu G, Comandaru IM, Rodriguez-Garcia G et al (2014) Evaluation of water services system through LCA. A case study for Iasi City, Romania. Int J Life Cycle Assess 19:449–462. doi:10.1007/s11367-013-0635-8

    Article  Google Scholar 

  5. CEDEX. Centre for Hydrographic Studies (2009) Technical guide on sewer networks and urban drain (Guía técnica sobre redes de saneamiento y drenaje urbano), 3rd ed. Ministerio de Fomento. Secretaría General Técnica, Centro de Publicaciones, Madrid

  6. Cohen R, Wolff G, Cousins E, Greenfield B (2004) Energy down the drain. The hidden costs of California’s water supply. Natural Resources Defense Council, Pacific Institute, Oakland

    Google Scholar 

  7. CONTEC (2012) Control Técnico del Ciclo Integral del Agua, ©Aqualogy services company

  8. CREM. Centro Regional de Estadística de Murcia (2011) Evolution of the total Gross Available Income per home and per capita (Evolución de la Renta Disponible Bruta total de los hogares y per cápita). Accessed Nov 2013

  9. Domene E, Saurí D (2003) Urban Models and Water Consumption. Watering of private gardens in the Metropolitan Region of Barcelona (Modelos Urbanos y Consumo de Agua. El Riego de Jardines Privados en la Región Metropolitana de Barcelona). Investig Geogr 32:5–17

    Google Scholar 

  10. EA. The Environment Agency (2008) Greenhouse gas emissions of water supply and demand management options. Science Report - SC070010. Environment Agency, Bristol, UK

  11. ecoinvent. Swiss Centre for Life Cycle Inventories (2009) ecoinvent database v3.0. Technical report

  12. Farmani R, Butler D (2014) Implications of urban form on water distribution systems performance. Water Resour Manag 28:83–97

    Article  Google Scholar 

  13. Fenner RA (2000) Approaches to sewer maintenance : a review. Urban Water 2:343–356

    Article  Google Scholar 

  14. Filion YR (2008) Impact of urban form on energy use in water distribution systems. J Infrastruct Syst 14:337–346

    Article  Google Scholar 

  15. GISAgua (2012) ©Aqualogy Services Company

  16. Griffiths-Sattenspiel B, Wilson W (2009) The carbon footprint of water. A River Network Report, Portland, USA.

  17. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts M (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht, 692 pp. ISBN 1-4020-0228-9

    Google Scholar 

  18. Haghighi A, Bakhshipour AE (2012) Optimization of sewer networks using an adaptive genetic algorithm. Water Resour Manag 26:3441–3456. doi:10.1007/s11269-012-0084-3

    Article  Google Scholar 

  19. Hospido A, Moreira MT, Feijoo G (2008) LCA case studies a comparison of municipal wastewater treatment plants for big centres of population in Galicia (Spain). Int J Life Cycle Assess 13:57–64

    Article  Google Scholar 

  20. Idescat. Statistical Institute of Catalonia (2013) Municipal database. Accessed Apr 2014

  21. IEA. International Energy Agency (2014) Spain: electricity and heat for 2011. Accessed Apr 2014

  22. IECA. Instituto de Estadística y Cartografía de Andalucía (2010) Andalusian municipalities. basic data 2010 (Municipios Andaluces. Datos Básicos 2010). Consejería de Economía y Hacienda

  23. ieex. Instituto Estadístico de Extremadura (2011) Socioeconomic atlas of Extremadura 2011 - Summary (Atlas Socioeconómico de Extremadura 2011- Resumen). Accessed Nov 2013

  24. IGE. Instituto Galego de Estadística (2009) Primary and secondary distribution of the income per council (Contas de asignación primaria e de distribución secundaria da renda por concellos). Accessed Nov 2013

  25. INE. Instituto Nacional de Estadística (2013) Population and household census, Press notice (Censos de Población y Viviendas 2011, Notas de prensa). Accessed Jan 2014

  26. ISO. International Organization for Standardization (2006) Environmental management—life cycle assessment —principles and framework. International Standard 14040. Geneva

  27. Lemos D, Dias AC, Gabarrell X, Arroja L (2013) Environmental assessment of an urban water system. J Clean Prod 54:157–165. doi:10.1016/j.jclepro.2013.04.029

    Article  Google Scholar 

  28. Mahgoub E-SMM, van der Steen NP, Abu-Zeid K, Vairavamoorthy K (2010) Towards sustainability in urban water: a life cycle analysis of the urban water system of Alexandria City, Egypt. J Clean Prod 18:1100–1106. doi:10.1016/j.jclepro.2010.02.009

    Article  Google Scholar 

  29. Pacione M (2009) Urban geography: a global perspective, 3rd edn. Routledge, London

    Google Scholar 

  30. Petit-Boix A, Sanjuan-Delmás D, Gasol CM, Villalba G, Suárez-Ojeda ME, Gabarrell X, Josa A, Rieradevall J (2014) Environmental assessment of sewer construction in small to medium sized cities using life cycle assessment. Water Resour Manag 28:979–997. doi:10.1007/s11269-014-0528-z

    Article  Google Scholar 

  31. Roberts DW, Kubel D, Carrie A et al (2008) Cost and benefits of complete water treatment plant automation. AwwaRF IWA, London

    Google Scholar 

  32. Roux P, Mur I, Risch E, Boutin C (2011) Urban planning of sewer infrastructure: Impact of population density and land topography on environmental performances of wastewater treatment systems. Present. Life Cycle Conf. 2011, “Policy LCM Public Policy” Sess. Berlin

  33. Shimizu Y, Dejima S, Toyosada K (2012) The CO2 emission factor of water in Japan. Water 4:759–769. doi:10.3390/w4040759

    Article  Google Scholar 

  34. SPSS Inc (2009) PASW statistics for windows, version 18.0. SPSS Inc, Chicago

    Google Scholar 

  35. Strutt J, Wilson S, Shorney-Darby H et al (2008) Assessing the carbon footprint of water production. J Am Water Works Assoc 100:80–91

    Google Scholar 

  36. The World Bank (2014) Urban population (% of total). ZS. Accessed Jul 2014

  37. Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts for urban water cycle services: case study of Oslo (Norway). Energy 36:792–800. doi:10.1016/

    Article  Google Scholar 

  38. Venkatesh G, Hammervold J, Brattebø H (2009) Combined MFA-LCA for analysis of wastewater pipeline networks. J Ind Ecol 13:532–550. doi:10.1111/j.1530-9290.2009.00143.x

    Article  Google Scholar 

  39. Wolman A (1965) The metabolism of cities. Sci Am 213:179–190

    Article  Google Scholar 

Download references


This study was performed in the framework of the AQUAENVEC Project (LIFE10/ENV/ES/520) “Assessment and improvement of the urban water cycle eco-efficiency using LCA and LCC”. The authors are grateful for the support of the Spanish Ministry of Education and Science through the projects BIA2010-20789-C04-01 and CTM2010-17365, and the grant awarded to A. Petit-Boix (FPU13/01273) to conduct this research.

Author information



Corresponding author

Correspondence to Anna Petit-Boix.

Additional information


The electricity consumption in sewers varies depending on the city.

On average, Spanish sewers consume 6.4 kWh per capita.

Atlantic cities require more energy to pump wastewater than Mediterranean regions.

The electricity needs depend on the length of the sewer and the wastewater production

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 533 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petit-Boix, A., Sanjuan-Delmás, D., Chenel, S. et al. Assessing the Energetic and Environmental Impacts of the Operation and Maintenance of Spanish Sewer Networks from a Life-Cycle Perspective. Water Resour Manage 29, 2581–2597 (2015).

Download citation


  • Energy
  • Sewer
  • LCA
  • Operation
  • City