Skip to main content
Log in

Data Fusion Techniques for Improving Soil Moisture Deficit Using SMOS Satellite and WRF-NOAH Land Surface Model

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Microwave remote sensing and mesoscale weather models have high potential to monitor global hydrological processes. The latest satellite soil moisture dedicated mission SMOS and WRF-NOAH Land Surface Model (WRF-NOAH LSM) provide a flow of coarse resolution soil moisture data, which may be useful data sources for hydrological applications. In this study, four data fusion techniques: Linear Weighted Algorithm (LWA), Multiple Linear Regression (MLR), Kalman Filter (KF) and Artificial Neural Network (ANN) are evaluated for Soil Moisture Deficit (SMD) estimation using the SMOS and WRF-NOAH LSM derived soil moisture. The first method (and most simplest) utilizes a series of simple combinations between SMOS and WRF-NOAH LSM soil moisture products, while the second uses a predictor equation generally formed by dependent variables (Probability Distributed Model based SMD) and independent predictors (SMOS and WRF-NOAH LSM). The third and fourth techniques are based on rigorous calibration and validation and need proper optimisation for the final outputs backboned by strong non-linear statistical analysis. The performances of all the techniques are validated against the probability distributed model based soil moisture deficit as benchmark; estimated using the ground based observed datasets. The observed high Nash Sutcliffe Efficiencies between the fused datasets with Probability Distribution Model clearly demonstrate an improved performance from the individual products. However, the overall analysis indicates a higher capability of ANN and KF for data fusion than the LWA or MLR approach. These techniques serve as one of the first demonstrations that there is hydrological relevant information in the coarse resolution SMOS satellite and WRF-NOAH LSM data, which could be used for hydrological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alley WM (1984) The Palmer drought severity index: limitations and assumptions. J Clim Appl Meteorol 23(7):1100–1109

    Article  Google Scholar 

  • Al-Shrafany D, Rico-Ramirez MA, Han D, Bray M (2013) Comparative assessment of soil moisture estimation from land surface model and satellite remote sensing based on catchment water balance. Meteorol Appl. doi:10.1002/met.1357

    Google Scholar 

  • Anderson JA (1995) An introduction to neural networks, vol 1. MIT Press, Cambridge MA, p 650

  • Anderson B, Moore J (1979) Optimal filtering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Bell V, Moore R (1998) A grid-based distributed flood forecasting model for use with weather radar data: Part 2. Case studies. Hydrol Earth Syst Sci 2(2/3):283–298

    Article  Google Scholar 

  • Cabus P (2008) River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium. Agric Water Manag 95(7):859–868

    Article  Google Scholar 

  • Calder I, Harding R, Rosier P (1983) An objective assessment of soil-moisture deficit models. J Hydrol 60(1–4):329–355

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Dornfeld DA, DeVries M (1990) Neural network sensor fusion for tool condition monitoring. CIRP Ann Manuf Technol 39(1):101–105

    Article  Google Scholar 

  • Gupta M, Garg N, Joshi H, Sharma M (2012) Persistence and mobility of 2, 4-D in unsaturated soil zone under winter wheat crop in sub-tropical region of India. Agric Ecosyst Environ 146(1):60–72

    Article  Google Scholar 

  • Helske J (2010) KFAS: Kalman filter and smoothers for exponential family state space models. R package version 06 0, URL http://CRAN.R-projectorg/package=KFAS

  • Hogue TS, Bastidas L, Gupta H, Sorooshian S, Mitchell K, Emmerich W (2005) Evaluation and transferability of the Noah land surface model in semiarid environments. J Hydrometeorol 6(1):68–84

    Article  Google Scholar 

  • Hong S, Lakshmi V, Small EE, Chen F, Tewari M, Manning KW (2009) Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. J Geophys Res 114(D18), D18118

    Article  Google Scholar 

  • Ishak A, Remesan R, Srivastava P, Islam T, Han D (2013) Error correction modelling of wind speed through hydro-meteorological parameters and mesoscale model: a hybrid approach. Water Resour Manag 27(1):1–23. doi:10.1007/s11269-012-0130-1

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Han D, Bray M, Srivastava PK (2012) Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations. Theor Appl Climatol 112(1–2):317–338

    Google Scholar 

  • Jackson TJ, Le Vine DM, Hsu AY, Oldak A, Starks PJ, Swift CT, Isham JD, Haken M (1999) Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment. Geosci Remote Sens IEEE Trans 37(5):2136–2151

    Article  Google Scholar 

  • Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis, vol 4. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP, Martinuzzi J, Font J, Berger M (2001) Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. Geosci Remote Sens IEEE Trans 39(8):1729–1735

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Richaume P, Wigneron JP, Ferrazzoli P, Mahmoodi A, Al Bitar A, Cabot F, Gruhier C, Juglea SE (2012) The SMOS soil moisture retrieval algorithm. Geosci Remote Sens IEEE Trans 50(5):1384–1403

    Article  Google Scholar 

  • Koopman SJ (2012) Time series analysis by state space methods, vol 38. Oxford University Press, Oxford, p 346

  • Koopman SJ, Durbin J (2000) Fast filtering and smoothing for multivariate state space models. J Time Ser Anal 21(3):281–296

    Article  Google Scholar 

  • Koopman SJ, Durbin J (2003) Filtering and smoothing of state vector for diffuse state–space models. J Time Ser Anal 24(1):85–98

    Article  Google Scholar 

  • Kutner MH, Nachtsheim C, Neter J (2004) Applied linear regression models. McGraw-Hill/Irwin; 5th edn (August 10, 2004), p 1396

  • Li XR, Zhu Y, Wang J, Han C (2003) Optimal linear estimation fusion. I. Unified fusion rules. Inf Theory IEEE Trans 49(9):2192–2208

    Article  Google Scholar 

  • Liu J, Han D (2010) Indices for calibration data selection of the rainfall-runoff model. Water Resour Res 46(4), W04512

    Google Scholar 

  • Michalakes J, Chen S, Dudhia J, Hart L, Klemp J, Middlecoff J, Skamarock W (2001) Development of a next generation regional weather research and forecast model. In: Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the use of high performance computing in meteorology. World Scientific, pp 269–276

  • Mohan M, Bhati S (2011) Analysis of WRF model performance over subtropical region of Delhi, India. Adv Meteorol 2011:13. doi:10.1155/2011/621235

  • Moody J, Hanson S, Krogh A, Hertz JA (1995) A simple weight decay can improve generalization. Adv Neural Inf Process Syst 4:950–957

    Google Scholar 

  • Moore R (2007) The PDM rainfall-runoff model. Hydrol Earth Syst Sci 11(1):483–499

    Article  Google Scholar 

  • Nash JE, Sutcliffe J (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3):536–549

    Article  Google Scholar 

  • Norbiato D, Borga M, Degli Esposti S, Gaume E, Anquetin S (2008) Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J Hydrol 362(3):274–290

    Article  Google Scholar 

  • Pan H-L, Mahrt L (1987) Interaction between soil hydrology and boundary-layer development. Bound-Layer Meteorol 38(1):185–202

    Article  Google Scholar 

  • RDevelopment C (2010) TEAM. 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rees HG, Collins DN (2006) Regional differences in response of flow in glacier–fed Himalayan rivers to climatic warming. Hydrol Process 20(10):2157–2169

    Article  Google Scholar 

  • Saleh K, Wigneron J-P, De Rosnay P, Calvet J-C, Escorihuela MJ, Kerr Y, Waldteufel P (2006) Impact of rain interception by vegetation and mulch on the L-band emission of natural grass. Remote Sens Environ 101(1):127–139

    Article  Google Scholar 

  • Schaake JC, Koren VI, Duan Q-Y, Mitchell K, Chen F (1996) Simple water balance model for estimating runoff at different spatial and temporal scales. J Geophys Res D Atmos 101:7461–7475

    Article  Google Scholar 

  • Shumway RH, Stoffer DS, Stoffer DS (2000) Time series analysis and its applications, vol 549. Springer, New York

    Book  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485

    Article  Google Scholar 

  • Srivastava PK, Han D, Rico-Ramirez MA (2012a) Assessment of SMOS satellite derived soil moisture for soil moisture deficit stimation. Symposium on Prediction in Ungauged basin (PUBS) co-organized by Delft University of Technology, Delft, Netherlands and International Association of Hydrological Sciences (IAHS) dated 22–25 October 2012:1

  • Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T (2012b) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50(9):1250–1265. doi:10.1016/j.asr.2012.06.032

    Article  Google Scholar 

  • Srivastava PK, Han D, Ramirez MR, Islam T (2013a) Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour Manag 27(8):3127–3144. doi:10.1007/s11269-013-0337-9

    Article  Google Scholar 

  • Srivastava PK, Han D, Rico-Ramirez MA (2013b) Data fusion techniques for an improved soil moisture retrieval using SMOS and WRF-NOAH Land surface model SMOS land application workshop, ESA-ESRIN, Frascati, Italy 25–27 February 2013

  • Srivastava PK, Han D, Rico-Ramirez MA, Islam T (2013c) Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol Process. doi:10.1002/hyp.9946

  • Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013d) Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J Hydrol. doi:10.1016/j.jhydrol.2013.06.021

    Google Scholar 

  • Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013e) Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through Weather Research and Forecasting model. Atmos Sci Lett 14(2):118–125. doi:10.1002/asl2.427

    Article  Google Scholar 

  • Stathaki T (2008) Image fusion: algorithms and applications. Academic Press, London, p 520

  • Sun S-l (2004) Multi-sensor optimal information fusion Kalman filters with applications. Aerosp Sci Technol 8(1):57–62

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Zhang G, Eddy Patuwo B, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14(1):35–62

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Commonwealth Scholarship Commission, British Council, United Kingdom and Ministry of Human Resource Development, Government of India for providing the necessary support and funding for this research. The authors would like to acknowledge the British Atmospheric Data Centre and Environment Agency, United Kingdom for providing the ground datasets. The author also acknowledges the Advanced Computing Research Centre at University of Bristol for providing the access to the supercomputer facility (The Blue Crystal) and Linux R support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, P.K., Han, D., Rico-Ramirez, M.A. et al. Data Fusion Techniques for Improving Soil Moisture Deficit Using SMOS Satellite and WRF-NOAH Land Surface Model. Water Resour Manage 27, 5069–5087 (2013). https://doi.org/10.1007/s11269-013-0452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0452-7

Keywords

Navigation