Skip to main content
Log in

Decision Support for the Selection of Measures according to the Requirements of the EU Water Framework Directive

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

One major scientific challenge posed by the EU Water Framework Directive (WFD) is the design of a decision support process that meets the Directive’s requirement to achieve “good status” for all water bodies using a cost-effective combination of measures. This paper presents BASINFORM, a new decision methodology for selecting cost-effective management measures, developed in close co-operation with the water authorities and tested in the 5,154 km² mesoscale river Weisse Elster in central Germany. BASINFORM comprises (i) a procedure for framing the specific problems in the water bodies, including quantification of the need for action, (ii) modelling tools for quantifying the impacts of management measures, and (iii) a method for selecting cost-effective combinations of measures. One innovative feature of BASINFORM is that it structures the complex decision problems appropriately for practical use and provides an easy-to-use framework for integrating scientific and practical knowledge. A trial run applying BASINFORM to the Weisse Elster catchment revealed that good surface water status with respect to nutrient levels cannot be achieved if only the “standard” actions of current water management are taken to reduce point sources (sewage treatment) and diffuse agricultural sources. It also became clear that the nutrient-reduction measures available will generate considerable costs. The application of BASINFORM in this case study demonstrated its practical applicability in the WFD implementation process. Beyond the case study described here BASINFORM is currently being used for practical implementation of the WFD in the German Federal State of Thuringia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. BASINFORM was also applied to the Emsbach water body (320 km2, German federal state of Hessen, Richter et al. 2009a, b) and used for practical implementation of the WFD in Thuringia (Section 5).

  2. In fact, BASINFORM is currently (2010) being applied by the German federal state of Thuringia. The state of Brandenburg is currently considering BASINFORM for improving the hydro-morphology of river water bodies (Klauer and Bathe 2010).

  3. In Germany, it is the “German Working Group on Water Issues of the Federal States and the Federal Government” (Bund/Länder-Arbeitsgemeinschaft Wasser, LAWA) that establishes the thresholds for good water status. The relevant LAWA (2004) water quality classes (WQC) are discussed in Section 3.2.

  4. Information about degrees of uncertainty may in fact be very important for deciding about management options. Such information may stem from different sources: in the approach to impact analysis introduced in Section 3, quantitative information about modelling uncertainty is obtained. In more practical approaches quantitative information may not be available—in these cases uncertainties may be estimated by the experts involved.

  5. LAWA stands for “German Working Group on Water Issues of the Federal States and the Federal Government”.

  6. The NRUs were aggregated from hydrological response units (HRUs, Flügel 1995), because not all HRU attributes (such as elevation, slope, exposition, geology) proved to be important for nitrogen leaching calculations with the meta model.

  7. An uncertainty analysis based on the Monte Carlo approach (Reichert and Vanrolleghem 2001) was carried out for the calibrated model (using PEST, Doherty 2002). A detailed sensitivity analysis can be found in Wagenschein (2006). During the calibration process, PEST can be used to quantify the 95% confidence interval.

  8. Maximum possible load reductions in this sense are given in Table 3 (Section 3.2) for all the water bodies in the Weisse Elster river.

  9. In this case measures 1b and 2a together lead to an overfulfillment of the quality target. One option might then be to introduce integrated farming only on a percentage of cropland. Whether this is possible depends on the chosen instrument for implementation, i.e. whether technical farming standards are modified or promotional programmes are introduced. This option was not investigated in the project. In a real decision context this would be a starting point for designing a specifically adapted measure.

References

  • Ambrose RB, Wool TA, Martin JL (1993) The water quality simulation program, WASP5: model theory, user’s manual, and programmer’s guide. U.S. Environmental Protection Agency, Athens

    Google Scholar 

  • Bathe F (2010) Die Umsetzung der EG-Wasserrahmenrichtlinie in Deutschland–eine vergleichende Analyse der Entwürfe der Bewirtschaftungspläne. UFZ-Bericht, 1/2010, Helmholtz-Zentrum für Umweltforschung, Leipzig

  • Beechie T, Pess G, Roni P (2008) Setting river restoration priorities: a review of approaches and a general protocol for identifying and prioritizing actions. N Am J Fish Manag 28:891–905

    Article  Google Scholar 

  • Behrendt H, Huber P, Ley M, Opitz D, Schmoll O, Scholz G, Uebe R (1999) Nährstoffbilanzierung der Flussgebiete Deutschlands, UBA-texts 75/99, German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety, Berlin

  • Borchardt D, Bosenius U, Dörr R-D, Ewens H-P, Friedl C, Irmer U, Jekel H, Keppner L, Mohaupt V, Naumann S, Rechenberg B, Rechenberg J, Richter S, Rohrmoser W, Stratenwerth T, Willeke J, Wolter R (2005) Water framework directive–summary of river Basin district analysis 2004 in Germany. Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety, Berlin

  • Bräuer I, Neubert K (2008) Kostenabschätzung von Maßnahmen auf Flusseinzugsgebietsebene. In: Klauer B, Rode M, Petry D (eds) Flussgebietsmanagement nach EG-Wasserrahmenrichtlinie. Metropolis-Verlag, Marburg, pp 175–199

    Google Scholar 

  • Doherty J (2002) PEST: model independent parameter estimation, 4th edn. Watermark Numerical Computing and Waterloo Hydrogeologic, Corinda

    Google Scholar 

  • DRL–Deutscher Rat für Landespflege (eds) (2008) Kompensation von Strukturdefiziten in Fließgewässern durch Strahlwirkung. Gutachtliche Stellungnahme und Ergebnisse des Projektes “Potenziale der Fließgewässer zur Kompensation von Strukturdefiziten (“Strahlwirkung”)” vom 01. Oktober 2006 bis 30. November 2007. Schriftenreihe des Deutschen Rates für Landespflege (81), Bonn

  • European Commission (2007) Towards sustainable water management in the European Union. First stage in the implementation of the Water Framework Directive 2000/60/EC, Brussels

  • Evers M (2005) Hochwasser-bezogene DSS im europäischen Nordseeraum. Ergebnisse einer Inventarisierung im Rahmen des EU Interreg-Projektes FLOWS. In: Entscheidungsunterstützung in der Wasserwirtschaft–Von der Theorie zum Anwendungsfall. Proceedings zum Tag der Hydrologie 2005, Aachen, pp 147–156

  • Flügel W-A (1995) Delineating Hydrological Response Units (HRU’s) by GIS analysis for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol Process 9:423–436

    Article  Google Scholar 

  • Franko U, Oelschlagel B, Schenk S (1995) Simulation of temperature, water and nitrogen dynamics using the model candy. Ecol Model 81:213–222

    Article  Google Scholar 

  • Gastelum JR, Valdes JB, Stewart S (2009) A decision support system to improve water resources management in the Conchos Basin. Water Resour Manag 23:1519–1548

    Article  Google Scholar 

  • Giupponi C, Mysiak J, Fassio A, Cogan V (2004) MULINO-DSS: a computer tool for sustainable use of water resources at the catchment scale. Math Comput Simul 64:13–24

    Article  Google Scholar 

  • Giupponi C (2007) Decision support systems for implementing the European water framework directive: the MULINO approach. Environ Model Softw 22:248–258

    Article  Google Scholar 

  • Haase D, Hirt U, Klauer B, Petry D, Rosenberg M, Rode M, Schiller J, Volk M, Wagenschein D (2008) Die Weisse Elster als Fallbeispiel. In: Klauer et al. (2008) pp 63–74

  • Hesser F, Franko U, Kralisch S, Rode M (2008): Integrierte Stickstofftransportmodellierung. In: Klauer et al. (2008) pp 121–146

  • Hesser FB, Franko U, Rode M (2010) Spatially distributed lateral nitrate transport at the catchment scale. J Environ Qual 39. doi:10.2134/jeq2009.0031

  • Interwies E, Kraemer RA, Kranz N, Görlach B, Dworak T, Borchardt D, Richter S, Willecke J (2004) Basic Principles for selecting the most cost-effective combinations of measures for inclusion in the programme of measures as described in article 11 of the water framework directive–handbook. UBA-texts 24/04, German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety, Berlin

  • Irmer U, von Keitz S (2002) Die Anforderungen an den Schutz der Oberflächengewässer. In: von Keitz S, Schmalholz M (eds) Handbuch der EU-Wasserrahmenrichtlinie. Erich Schmidt, Berlin, pp 107–143

    Google Scholar 

  • Khadra R, Lamaddalena N (2010) Development of a decision support system for irrigation systems analysis. Water Resour Manag 24:3279–3297

    Article  Google Scholar 

  • Klauer B, Bathe F (2010) BASINFORM-M: Verfahren zur Berücksichtigung von Kosteneffizienz bei der Aufstellung und Umsetzung der Gewässerentwicklungskonzepte in Brandenburg–Handlungsanleitung. Report to Ministry of the Environment of the Federal State of Brandenburg, Leipzig

  • Klauer B, Drechsler M, Messner F (2006) Multicriteria analysis under uncertainty with IANUS–method and empirical results. Environment and planning C, 24(2), special issue: participatory multi-criteria decision aid for river basin management–methodological challenges and solution approaches, pp 235–256

  • Klauer B, Mewes M, Diening H, Lagemann T (2007) BASINFORM–method for establishing programmes of measures following the EU water framework directive. UFZ Discussion Paper 7/2007, Helmholtz Centre for Environmental Research, Leipzig

  • Klauer B, Rode M, Petry D (eds) (2008) Flussgebietsmanagement nach EG-Wasserrahmenrichtlinie. Metropolis-Verlag, Marburg

    Google Scholar 

  • Kofalk S, Boer S, Kok J-L de, Matthies M, Hahn B (2005) Ein decision support system für das Flusseinzugsgebietsmanagement der Elbe. In: Feld CK, Rödiger S, Sommerhäuser M, Friedrich G (eds) Typologie, Bewertung, Management von Oberflächengewässern. Stand der Forschung zur Umsetzung der EG-Wasserrahmenrichtlinie. Schweizerbart, Stuttgart, pp 236–243

  • de Kok JL, Kofalk S, Berlekamp J, Hahn B, Wind H (2009) From design to application of a decision-support system for integrated river-basin management. Water Resour Manag 23:1781–1811

    Article  Google Scholar 

  • LAWA–Bund/Länder-Arbeitsgemeinschaft Wasser (2004) Workshop LAWA-EUF Bonn III “Bestandsaufnahme nach WRRL: Vorgehensweise und Ergebnisse”,Siegburg, http://www.lawa.de/Publikationen-Veroeffentlichungen-nach-Sachgebieten.html

  • Maia R, Silva C (2009) DSS application at a river basin scale, taking into account water resources exploitation risks and associated costs: the Algarve region. Desalination 237:81–91

    Article  Google Scholar 

  • Matthies M, Giupponi C, Ostendorf B (2007) Environmental decision support systems: current issues, methods and tools. Environ Model Softw 22:123–127

    Article  Google Scholar 

  • Möltgen J, Bohn C, Borchert R, Gretzschel O, Pöpperl R, May M, Hirschfeld J (2005) Interdisziplinäre Methoden und Werkzeuge zur Planung und Entscheidungsunterstützung im Flusseinzugsgebietsmanagement–FLUMAGIS. In: Feld CK, Rödiger S, Sommerhäuser M, Friedrich G (eds) Typologie, Bewertung, Management von Oberflächengewässern. Stand der Forschung zur Umsetzung der EG-Wasserrahmenrichtlinie. Schweizerbart, Stuttgart, pp 177–193

  • Neufang L, Auerswald K, Flacke W (1989) Automatisierte Erosionsprognose- und Gewässerverschmutzungskarten mit Hilfe der dABAG–ein Beitrag zur standortgerechten Bodennutzung. Sonderdruck aus Bayer. Landwirtschaftliches Jahrbuch 66, Heft 7

  • Petersen T, Klauer B, Manstetten R (2009) The environment as a challenge for governmental responsibility—the case of the European water framework directive. Ecol Econ 68:2058–2065

    Article  Google Scholar 

  • Reichert P, Vanrolleghem P (2001) Identifiability and uncertainty analysis of the river water quality model no. 1. Water Sci Technol 43(7):329–338

    Google Scholar 

  • Richter S, Borchardt D, Funke M, Klauer B, Mewes M (2009a) Phosphorbelastung von Fließgewässern: Welchen Einfluss haben unterschiedliche Zielwerte auf die Priorisierung und Kosten von Maßnahmen? Wasser und Abfall 1(2009):45–50

    Google Scholar 

  • Richter S, Funke M, Borchardt D, Mewes M, Klauer B (2009b) Beispielhafte Anwendung des Verfahrens BASINFORM am Wasserkörper Emsbach (Hessen) zur Aufstellung von Maßnahmenprogrammen nach Wasserrahmenrichtlinie. UFZ Discussion Paper 4/2009, Helmholtz Centre for Environmental Research, Leipzig

  • Rode M, Frede H-G (1997) Modification of AGNPS for agricultural land and climate condition in central Germany. J Environ Qual 26(1):165–172

    Article  Google Scholar 

  • Rode M, Franko U, Shbaita H, Wenk G, Wagenschein D (2008a) Analyse der Wirkungen von Umweltmaßnahmen. In: Klauer et al. (2008) pp 203–226

  • Rode M, Klauer B, Petry D, Volk M, Wenk G, Wagenschein D (2008b) Integrated nutrient transport modelling with respect to the implementation of the European WFD: the Weisse Elster Case Study, Germany. Water SA 34(4) (Special HELP edition)

  • Roy B (1996) Multicriteria methodology for decision aiding. Dortrecht et al.

  • Schiller J, Klauer B, Bräuer I, Petry D, Rode M, Wagenschein D (2008) Defizitanalyse, Zielbestimmung und Vorauswahl von Maßnahmen: Methodische Vorgehensweise. In: Klauer et al. (2008) pp 77–113

  • Schmidt J, von Werner M, Michael A (1996) Erosion 2D/3D–Ein Computermodell zur Simulation der Bodenerosion durch Wasser. Sächsische Landesanstalt für Landwirtschaft und Sächsisches Landesamt für Umwelt und Geologie, Dresden

    Google Scholar 

  • Schmidt J, von Werner M, Michael A (1999) Application of the erosion 3D model to the CATSOP watershed, The Netherlands. Catena 37:449–456

    Article  Google Scholar 

  • Schmidt TG, Franko U, Meissner R (2008) Uncertainties in large-scale analysis of agricultural land use—a case study for simulation of nitrate leaching. Ecol Model 217:174–180

    Article  Google Scholar 

  • Schumann A, Dietrich J, Podraza P, Borchardt D, Michels I, Petschow U (2005) Integration ökologischer, hydrologischer, siedlungswasserwirtschaftlicher, sozio-ökonomischer und entscheidungstheoretischer Aspekte in das Flussgebietsmanagement am Beispiel der Werra. In: Feld CK, Rödiger S, Sommerhäuser M, Friedrich G (eds) Typologie, Bewertung, Management von Oberflächengewässern. Stand der Forschung zur Umsetzung der EG-Wasserrahmenrichtlinie. Schweizerbart, Stuttgart, pp 221–235

  • Sewilam H, Bartusseck S, Nacken H (2007) Rule-based decision support system for the morphological rehabilitation of watercourses. Water Resour Manag 21:2037–2047

    Article  Google Scholar 

  • Shanahan P, Alam MM (2001) WASP version 5.2. Maine Department of Environmental Protection

  • Shbaita H, Rode M (2008) Regionalisierung am Beispiel der Phosphoraustragsmodellierung. In: Klauer et al. (2008) pp 159–166

  • Todini E, Schumann A, Assimacopoulos D (2006) The WaterStrategyMan decision support system. In: Koundouri et al (eds) Water management in arid and semi-arid regions–interdisciplinary perspectives. Edward Elgar, Cheltenham, pp 13–40

    Google Scholar 

  • Vincke P (1992) Multicriteria decision-aid. Chichester, Sussex

    Google Scholar 

  • Völker J, Borchardt D (2007) Hydromorphologische Bedingungen und deren Wechselwirkung mit der Makrozoobenthosbesiedlung. Ergebnisse und Schlussfolgerungen für die Umsetzung der WRRL in Bezug auf die Monitoringplanung und im Hinblick auf lokale regionale und überregionale Umweltziele. Abschlussbericht. Im Auftrag des Hessischen Landesamtes für Umwelt und Geologie (HLUG). Center for Environmental Systems Research (CESR), University of Kassel

  • Wagenschein D (2006) Einfluss der Gewässermorphologie auf die Nährstoffretention–Modellstudie am Beispiel der mittleren Weissen Elster. Dissertation, Centre for Environmental Research–UFZ, Leipzig

  • Wagenschein D, Rode M (2008) Modelling the impact of river morphology on nitrogen retention—a case study of the Weisse Elster River (Germany). Ecol Model 211:224–232

    Article  Google Scholar 

  • Ward FA (2007) Decision support for water policy: a review of economic concepts and tools. Water Pol 9:1–31

    Article  Google Scholar 

  • Warwick J (1999) Enhancement of the hydrodynamic model DYNHYD. Commented source code

  • WATECO–CIS Working Group (2003) Economics and the environment—the implementation challenge of the water framework directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document, No. 1, European Commission, Luxembourg

  • Winterscheid A, Hübner C (2006) Das nofdp IDSS–ein neues Konzept für ein transnationales Informations- und Entscheidungshilfesystem. In: Jüpner R (ed.): Beiträge zur Konferenz ‘Strategien und Instrumente zur Verbesserung des Vorbeugenden Hochwasserschutzes’ in Tangermünde. Magdeburger Wasserwirtschaftliche Hefte 6, Aachen, pp 123–132

Download references

Acknowledgments

We gratefully acknowledge financial support from the German Federal Ministry of Education and Research within the research programme “River Basin Management” (Grant 0330228). The authors wish to thank the following people for extensive discussions of the concepts introduced in this paper: Frauke Bathe, Ingo Bräuer, Holger Dining, Dagmar Haase, Fred Hesser, Sven Kralisch, Thomas Lagemann, Stefan Liersch, Silvia Morgenstern, Kristin Neubert, Daniel Petry, Matthias Rosenberg, Gerd Schmidt, Herwig Unnerstall, Martin Volk, Dierk Wagenschein, Gerald Wenk, and two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klauer, B., Rode, M., Schiller, J. et al. Decision Support for the Selection of Measures according to the Requirements of the EU Water Framework Directive. Water Resour Manage 26, 775–798 (2012). https://doi.org/10.1007/s11269-011-9944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-011-9944-5

Keywords

Navigation