Skip to main content
Log in

Crop Reference Evapotranspiration: A Discussion of the Concept, Analysis of the Process and Validation

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The study at first recalls the concept of “potential evapotranspiration” (PET), originally considered equal to the evaporation climatic demand; then, it reminds the steps of its progressive evolution toward the concept of “reference crop evapotranspiration” (ET0) determined on irrigated grass. A physical analysis conducted on the evaporation process is subsequently reported to help clarifying the links between ET0 and evaporation climatic demand. This analysis clearly demonstrates that the equivalence of ET0 to evaporation climatic demand is not correct, although still common assumption in recent scientific literature, particularly in hydrology. The study also identifies two processes acting in opposite directions in the dynamics of ET0: (1) the climatic variables determining the evaporation demand, and (2) the canopy resistance which slows down the response of irrigated grass to such demand. The analysis of the respective impact of these two processes on ET0 dynamics shows that the available energy is the dominant process. This variable takes into account the 60–70% of the variation of ET0, both at hourly and daily scales, while canopy resistance only explains 10–20% of ET0 variation of irrigated grass. The study regards different climatic situations. Possible effects on practical applications were also discussed in the conclusions, together with comments on the correct canopy resistance modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboukhaled A, Alfaro A, Smith M (1982) Lysimeters. FAO Irrigation and Drainage Paper 39, p 68

  • Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimate of reference evapotranspiration. Agron J 81:650–662

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56. FAO, Rome, p 300

  • Anon J (1956) Proceeding of the informal meeting on physics in agriculture. Neth J Agric Sci 4:162

    Google Scholar 

  • Bagnouls F, Gaussen H (1953) Saison sèche et indice Xérothermique. Documents pour les cartes de production végétales. Série généralités Toulouse, p 48 (In French)

  • Beven K (1979) A sensitivity analysis of the Penman–Monteith actual evapotranspiration estimates. J Hydrol 44:169–190

    Article  Google Scholar 

  • Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatological and irrigation data. Soil Conservation Service, Washington DC, p 48

    Google Scholar 

  • Castelvì S, Stockle CO, Perez PJ, Ibanez M (2001) Comparison of methods for applying the Priestley-Taylor equation at regional scale. Hydrol Process 15:1609–1620

    Article  Google Scholar 

  • Damagnez J, Riou C, De Villele O, Ammami S (1962) Problèmes d’évapotranspiration potentielle en Tunisie. Ann INRA Tunisie 35:161–184 (In French)

    Google Scholar 

  • Daudet FA, Perrier A (1968) Etude de l’évapotranspiration ou de la condensation à la surface d’un corps à partir du bilan énergetique. Rev Gén Therm 76:353–364 (In French)

    Google Scholar 

  • De Martonne E (1926) Une nouvelle fonction climatologique: l’indice d’aridité. La météorologie, Octobre, pp 449–459 (In French)

  • De Parcevaux S, Huber L (2007) Bioclimatologie. Concepts et applications. Editions Quae, p 336

  • Donohue RJ, Roderick ML, McVicar TR (2007) On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol Earth Syst Sci 11:983–999

    Article  Google Scholar 

  • Donohoue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand with a changing climate. J Hydrol 386:186–197

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1976) Guidelines for predicting crop water requirements. FAO ONU, Rome, Irr. And Drain. Paper no. 24 (revision), p 144

  • Douglas EM, Beltràn-Przekurat A, Niyogi D, Pielke RA, Vorosmarty CJ (2009) The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation—a mesoscal modeling perspective. Glob Planet Change 67(1–2):117–128

    Article  Google Scholar 

  • Emberger L (1930) La végétation de la région méditerranéenne. Essai d’une classification des groupements végétaux. Rev Gen Bot 42:705–721 (In French)

    Google Scholar 

  • Flint AL, Childs SW (1991) Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agric For Meteorol 56(3–4):247–260

    Article  Google Scholar 

  • Gosse G (1976) Evapotranspiration et caractéristiques d’un gazon en climat équatoriale humide. Ann Agric 27:141–163 (In French)

    Google Scholar 

  • Grebet P (1982) Evapotranspiration Mesure et calcul. Thèse Doc Ing. Université de Paris VI, p 272 (In French)

  • Guyot G (1998) Physics of the environment and climate. John Wiley, Chichester, USA, p 632

    Google Scholar 

  • Hazrat Ali M, Yeang Shui L (2009) Potential evapotranspiration model for Muda irrigation project, Malaysia. Water Resour Manage 23(1):57–69

    Article  Google Scholar 

  • Johnson F, Sharma A (2010) A comparison of Australian open water body evaporation trends for current and future climates estimated from Class A evaporation pans and general circulation models. J Hydrometeorol 11:105–121

    Article  Google Scholar 

  • Katerji N (1977) Contribution à l’étude de l’évapotranspiration réelle du blé tendre d’hiver. Application à la résistance du couvert en relation avec certains facteurs du milieu. Thése Doc. Ing. Université de Paris VII, p 120 (In French)

  • Katerji N, Rana G (2006) Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. Agric For Meteorol 138:142–155

    Article  Google Scholar 

  • Katerji N, Rana G (2008) Crop evapotranspiration measurements and estimation in the Mediterranean region. INRA–CRA. ISBN 978-8-89015-241-2, p 173

  • Katerji N, Perrier A (1983) Modélisation de l’évapotranspiration réelle d’une parcelle de luzerne: rôle d’un coefficient cultural. Agronomie 3(6):513–521 (In French)

    Article  Google Scholar 

  • Katerji N, Ferreira I, Mastrorilli M, Losavio N (1990) A simple equation to calculate crop evapotranspiration: results of several years of experimentation. Acta Orthod 278:477–489

    Google Scholar 

  • Lecina S, Martinez-Cob A, Pérez PJ, Villalobos FG, Baselga JJ (2003) Fixed versus bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions. Agric Water Manage 60:181–198

    Article  Google Scholar 

  • Lu J, Sun G, McNulty SG, Amatya DM (2005) A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. J Am Water Resour Assoc 41:621–633

    Article  Google Scholar 

  • Makking GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11(3):277–288

    Google Scholar 

  • Margat J (1992) L’eau dans le bassin méditerranéen: situation et prospective. Les fascicules du plan bleu n° 6. Edition Economica, p 198 (In French)

  • McCuen RH (1974) A sensitivity and error analysis of procedures used for estimating evaporation. Water Resour Bull 10(3):486–498

    Google Scholar 

  • McIlroy IC, Angus DE (1964) Grass, water and soil evaporation at Aspendale. Agric Meteorol 1:201–224

    Article  Google Scholar 

  • Meyer A (1926) Uber einige Zusammenhänge zwischen Klima und Boden in Europa. Chem Erde 2:209–347

    Google Scholar 

  • Monteith JL (1963) Gas exchange in plant communities. In: Evans (ed) Environmental control of plant growth. Academic Press, New York, pp 95–112

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Fogg (ed) The state and movement of water in living organism. Soc Exp Biol Symp 19:205–234

  • Monteith JL, Szeicz G, Waggoner PE (1965) The measurement and control of stomatal resistance in the field. J Appl Ecol 2(2):345–355

    Article  Google Scholar 

  • Oudin L, Michel C, Anctil F (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 1—can rainfall–runoff models effectively handle detailed potential evapotranspiration inputs? J Hydrol 303(1–4):275–289

    Article  Google Scholar 

  • Peguy C (1961) Précis de bioclimatologie. In: Masson (ed), p 347 (In French)

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc A 193:120–146

    Article  Google Scholar 

  • Penman HL (1956) Estimating evaporation. Trans Amer Geoph Uninon 37:43–50

    Google Scholar 

  • Penman HL (1963) Vegetation and hydrology. Technical com. 53, Commonwealth bureau of soils. Harpenden, UK, p 124

  • Pereira AR (2004) The Priestley-Taylor parameter and the decoupling factor for estimating refernce evapotranspiration. Agric For Meteorol 125:305–313

    Article  Google Scholar 

  • Pereira AR (2005) The Priestley–Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agric For Meteorol 125:305–313

    Article  Google Scholar 

  • Perrier A (1975) Etude physique de l’évapotranspiration dans les conditions naturelles. I. Evaporation et bilan d’énergie des surface naturelles. Ann Agron 26:1–18 (In French). II. Expression et paramètres donnant l’évapotranspiration réelle d’une surface mince. Ann Agron 26:105–123 (In French). III. Evapotranspiration réelle et potentielle des couverts végétaux. Ann Agron 26:229–243 (In French)

    Google Scholar 

  • Perrier A (1984) Updated evapotranspiration and crop water requirement definitions. In: Perrier, Riou (eds) Les besoins en eau des cultures. Conférence internationale de Paris, pp 885–887

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Pruitt WO (1964) Evapotranspiration: a guide to irrigation. Calif Turfgrass Cult 14:27–32

    Google Scholar 

  • Rana G, Katerji N (1998) A measurement based sensitivity analysis of Penman–Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor Appl Climatol 60:141–149

    Article  Google Scholar 

  • Rana G, Katerji N, Mastrorilli M, El Moujabber M (1994) Evapotranspiration and canopy resistance of grass in a Mediterranean region. Theor Appl Climatol 50(1–2):61–71

    Article  Google Scholar 

  • Riou C (1975) La détermination pratique de l’évaporation. Application à l’Afrique centrale. Mémoire ORSTOM °N 80, p 236 (In French)

  • Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34:L17403. doi:10.1029/2007GL031166

    Article  Google Scholar 

  • Roderick ML, Hobbins MT, Farquhar GD (2009) Pan evaporation trends and terrestrial water balance. II. Energy balance and interpretation. Geogr Compass 3:761–780

    Article  Google Scholar 

  • Rosenberg NJ, Blad L, Verma B (1983) Microclimate: the biological environment, 3rd edn. Wiley, New York, p 315

    Google Scholar 

  • Sarraf S (1973) Estimation de l’évapotranspiration potentielle et consommation en eau des cultures en région semi-aride (Liban). Thèse Doc Ing. Université de Montpellier, p 114 (In French)

  • Smith M, Allen RG, Monteith JL, Perrier A, Pereira LS, Segeren A (1991) Report on the expert consultation on revision of FAO methodologies for crop water requirements. FAO Land and Water Development Division, FAO, Rome, p 129

  • Stanhill G (1961) A comparison of methods of calculating potential evapotranspiration from climatic data. Isr J Agric Res 11:159–171

    Google Scholar 

  • Steduto P, Caliandro A, Rubino P, Ben Mechlia N, Masmoudi M, Martinez-Cob A, Jose Faci M, Rana G, Mastrorilli M, El Mourid M, Karrou M, Kanber R, Kirda C, El-Quosi D, El-Askari K, Ait Ali M, Zareb D, Snyder RL (1996) Penman-Monteith reference evapotranspiration estimates in the Mediterranean region. In: Proceedings of international conference on evapotranspiration and irrigation scheduling, San Antonio, Texas, 3–6 November 1996, pp 357–363

  • Thom AS (1972) Momentum, mass and heat exchange of vegetation. Q J R Meteorol Soc 98:124–134

    Article  Google Scholar 

  • Thom AS (1975) Momentum, mass and heat exchange of plant communities. In: Monteith (Td.) Vegetation and atmosphere, Principles, vol I. Academic Press, London, pp 57–109

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev NY 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW, Wilm HG (1944) Report of the committee on evapotranspiration and transpiration, 1943–1944. Washington, D.C., Transactions of the American Geophysical Union, pp 686–693

  • Todorovic M (1999) A model to estimate hourly and daily evapotranspiration using variable canopy resistance. PhD thesis, Univ. of Sassari (Italy), p 204

  • Trajkovic S, Kolakovic S (2009) Evolution of reference equations under humid conditions. Water Resour Manage 23(14). doi:10.1007/s11269-009-9423-4

  • Turc L (1961) Evaluation des besoins en eau d’irrigation. Evapotranspiration potentielle. Ann Agric 12:13–49 (In French)

    Google Scholar 

  • Van Bavel CHM (1966) Potential evapotranspiration: the combination concept and its experimental verification. Water Resour Res 2:455–467

    Article  Google Scholar 

  • Ventura F, Spano D, Duce P, Snyder RL (1999) An evaluation of common evapotranspiration equations. Irrig Sci 18:163–170

    Article  Google Scholar 

  • Verstraeten WW, Veroustraete F, Feyen J (2008) Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 8:70–117

    Article  Google Scholar 

  • Weiss M, Menzel L (2008) A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Adv Geosci 18:15–23

    Article  Google Scholar 

  • Wright JL, Allen RG, Howell TA (2002) Conversion between evapotranspiration references and methods. In: Proc., 4th decennial national irrigation symposium, Phoenix, AZ, ASAE, St. Josef, MI, pp 251–259

  • Zhang Q, Xu C-Y, Chen X (2010) Reference evapotranspiration changes in China: natural processes or human influences? Theor Appl Climatol. doi:10.1007/s00704-010-0315-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Rana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katerji, N., Rana, G. Crop Reference Evapotranspiration: A Discussion of the Concept, Analysis of the Process and Validation. Water Resour Manage 25, 1581–1600 (2011). https://doi.org/10.1007/s11269-010-9762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-010-9762-1

Keywords

Navigation