Skip to main content
Log in

Evaluation of Direct-Oxidative DNA Damage on Human Lung Epithelial Cells Exposed to Urban Airborne Particulate Matter

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

Airborne particulate matter (PM) extracts were investigated for their content of organic compounds and for the direct and oxidative DNA damage induced on lung epithelial cells A549. PM10 was seasonally collected at two monitoring sites (Stations 1 and 2), characterized by different traffic loads. The cells were exposed for 30 min to extracts of PM10 diluted at 0.025%, 0.05%, and 0.1% for summer samples, and at 0.05%, 0.1%, and 0.15% for winter samples. Oxidative and direct DNA damage were evaluated by formamidopyrimidine glycosylase (fpg) comet assay analyzing tail moment (TM) values from fpg-enzyme-treated cells (TMenz) and enzyme untreated cells (TM) respectively and by comet percentage analysis. Measurements relating to Station 2 showed higher levels of polycyclic aromatic hydrocarbons (PAHs), and their methyl-(methyl-PAHs) and nitro-(nitro-PAHs) derivatives in both the seasons. Nitro-PAH concentrations were higher in summer than in winter at both the stations. We found a significant increase of comet percentages at the highest dose of extract from both stations in summer and from Station 2 in winter. The TM and TMenz values relative to the summer sampling showed an early oxidative DNA damage induction also followed by direct DNA damage more evident at Station 2, that seems to correlate with the presence of higher nitro-PAH concentrations during the warm season. At both monitoring stations, the results from winter sampling campaign showed a direct DNA damage induction at 0.1% of extract and oxidative-direct DNA damage at the highest dose (0.15%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbey, D. E., Hwang, B. L., Burchette, R. J., Vancuren, T., & Mills, P. K. (1995). Estimated long-term ambient concentrations of PM10 and development of respiratory symptoms in a non-smoking population. Archives of Environmental Health, 50, 139–152.

    CAS  Google Scholar 

  • Arey, J., Zielinska, B., Atkinson, R., et al. (1986). The formation of nitro-PAHs from the gas-phase reactions of fluoranthene and pyrene with the OH radical in the presence of NOx. Atmospheric Environment, 20, 2339–2345.

    Article  CAS  Google Scholar 

  • Atkinson, R. (1987). A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. International Journal of Chemical Kinetics, 19, 799–828.

    CAS  Google Scholar 

  • Beeson, W. L., Abbey, D. E., & Knutsen, S. F. (1998). Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study. Adventist Health Study on Smog. Environmental Health Perspectives, 106(2), 813–823.

    Article  CAS  Google Scholar 

  • Binkova, B., Cerna, M., Pastorkova, A., Jelinek, R., Benes, I., Novak, J., et al. (2003). Biological activities of organic compounds adsorbed onto ambient air particles: comparison between the cities of Teplice and Prague during the summer and winter seasons 2000–2001. Mutation Research, 525(1–2), 43–59.

    CAS  Google Scholar 

  • Borsella, E., Di Filippo, P., Riccardi, C., Spicaglia, S., & Cecinato, A. (2004). Data quality of PAH determinations in environmental monitoring. Annali Di Chimica, 94(9–10), 691–698.

    Article  CAS  Google Scholar 

  • Cadet, J., Douki, T., Gasparutto, D., & Ravanat, J. L. (2003). Oxidative damage to DNA: formation, measurement and biochemical features. Mutation Research, 531, 5–23.

    CAS  Google Scholar 

  • Claxton, L. D., Matthews, P. P., & Warren, S. H. (2004). The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutation Research, 567(2–3), 347–399.

    CAS  Google Scholar 

  • Cohen, A. J., & Pope III., C. A. (1995). Lung cancer and air pollution. Environmental Health Perspectives, 103(suppl 8), 219–224.

    Article  Google Scholar 

  • Collins, A. R., Duthie, S. J., & Dobson, V. L. (1993). Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 14, 1733–1735.

    Article  CAS  Google Scholar 

  • Dejmek, J., Solansky, I., Benes, I., Lenicek, J., & Sram, R. J. (2000). The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environmental Health Perspectives, 108(12), 1159–1164.

    Article  CAS  Google Scholar 

  • Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., & Deutsch, W. A. (2001). Role of free radicals in the toxicity of airborne fine particulate matter. Chemical Research in Toxicology, 14, 1371–1377.

    Article  CAS  Google Scholar 

  • Di Filippo, P., Riccardi, C., Gariazzo, C., Incoronato, F., Pomata, D., Spicaglia, S., et al. (2007). Air pollutants and the characterization of the organic content of aerosol particles in a mixed industrial/semi-rural area in central Italy. Journal of Environmental Monitoring, 9(3), 275–282.

    Article  CAS  Google Scholar 

  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329, 1753–1759.

    Article  CAS  Google Scholar 

  • Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., et al. (2002). The pulmonary toxicology of ultrafine particles. Journal of Aerosol Medicine, 15(2), 213–220.

    Article  CAS  Google Scholar 

  • Donaldson, K., Stone, V., borm, P. J. A., Jimenez, L. A., Gilmour, p. S., Schins, R. P. F., et al. (2003). Oxidative stress and calcium signalling in the adverse effects of environmental particles (PM10). Free Radical Biology & Medicine, 34, 1369–1382.

    Article  CAS  Google Scholar 

  • Dybdahl, M., Risom, L., Bornholdt, J., Autrup, H., Loft, S., & Wallin, H. (2004). Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. Mutation Research, 562(1–2), 119–131.

    CAS  Google Scholar 

  • Ekunwe, S. I., Hunter, R. D., & Hwang, H. M. (2005). Ultraviolet radiation increases the toxicity of pyrene, 1-aminopyrene and 1-hydroxypyrene to human keratinocytes. International Journal of Environmental Research Public Health, 2, 58–62.

    Article  CAS  Google Scholar 

  • Gábelová, A., Valovičová, Z., Lábaj, J., Bačová, G., Binková, B., & Farmer, P. B. (2007). Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM10. Mutation Research, 620, 135–144.

    Google Scholar 

  • Gilmour, P. S., Brown, D. M., Lindsay, T. G., & Beswick, W. (1996). Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical. Occupational & Environmental Medicine, 53, 817–822.

    Article  CAS  Google Scholar 

  • Hirano, S., Furuyama, A., Koike, E., & Kobayashi, T. (2003). Oxidative-stress potency of organic extracts of diesel exhaust and urban fine particles in rat heart microvessel endothelial cells. Toxicology, 187, 161–170.

    Article  CAS  Google Scholar 

  • Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., & van den Brandt, P. A. (2002). Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet, 360(934), 1203–1209.

    Article  Google Scholar 

  • Knaapen, A. M., Shi, T., Borm, P. J., & Schins, R. P. (2002). Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Molecular and Cellular Biochemistry, 234–235, 317–326.

    Article  Google Scholar 

  • Katsouyanni, K., & Pershagen, G. (1997). Ambient air pollution exposure and cancer. Cancer Causes Control, 8(3), 284–91.

    Article  CAS  Google Scholar 

  • Kunzli, N., & Tager, I. B. (2000). Long-term health effects of particulate and other ambient air pollution: research can progress faster if we want it to. Environmental Health Perspectives, 108(10), 915–918.

    Article  CAS  Google Scholar 

  • Lewtas, J., & Gallagher, J. (1990). Complex mixtures of urban air pollutants: identification and comparative assessment of mutagenic and tumorigenic chemicals and emission sources. IARC Scientific Publications, 104, 252–260.

    CAS  Google Scholar 

  • Mauderly, J. L., Snipes, M. B., Barr, E. B., Belinsky, S. A., Bond, J. A., Brooks, A. L., et al. (1994). Pulmonary toxicity of inhaled diesel exhaust and carbon black in chronically exposed rats. Part I: neoplastic and nonneoplastic lung lesions. Research Report—Health Effects Institute, 68, 1–75.

    Google Scholar 

  • Nafstad, P., Haheim, L. L., Oftedal, B., Gram, F., Holme, I., Hjermann, I., et al. (2003). Lung cancer and air pollution: a 27 year follow up of 16,209 Norwegian men. Thorax, 58(12), 1071–1076.

    Article  CAS  Google Scholar 

  • Nyberg, F., Gustavsson, P., Jarup, L., Bellander, T., Berglind, N., Jacobsson, R., et al. (2000). Urban air pollution and lung cancer in Stockholm. Epidemiology, 11(5), 487–495.

    Article  CAS  Google Scholar 

  • Pope III., C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(6), 1132–1141.

    Article  CAS  Google Scholar 

  • Schins, R. P. (2002). Mechanisms of genotoxicity of particles and fibers. Inhalation Toxicology, 14, 57–78.

    Article  CAS  Google Scholar 

  • Shi, T., Knaapen, A. M., Begerow, J., Birmili, W., Borm, P. J., & Schins, R. P. (2003). Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occupational & Environmental Medicine, 60, 315–321.

    Article  CAS  Google Scholar 

  • Singh, P., De Marini, D. M., Dick, C. A., Tabor, D. G., Ryan, J. V., Linak, W. P., et al. (2004). Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environmental Health Perspectives, 112(8), 820–825.

    CAS  Google Scholar 

  • Squadrito, G. L., Cueto, R., Dellinger, B., & Pryor, W. A. (2001). Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radical Biology & Medicine, 31, 1132–1138.

    Article  CAS  Google Scholar 

  • Zhao, X. S., Wan, Z., Zhu, H. G., & Chen, R. P. (2003). The carcinogenic potential of extractable organic matter from urban airborne particles in Shanghai, China. Mutation Research, 540(1), 107–117.

    CAS  Google Scholar 

Download references

Acknowledgment

The research was supported by the Ministry of Health within the project ITALIA (PMS/025/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Cavallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallo, D., Ursini, C.L., Di Filippo, P. et al. Evaluation of Direct-Oxidative DNA Damage on Human Lung Epithelial Cells Exposed to Urban Airborne Particulate Matter. Water Air Soil Pollut: Focus 9, 69–77 (2009). https://doi.org/10.1007/s11267-008-9192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-008-9192-8

Keywords

Navigation