Skip to main content
Log in

Plant and Soil System Responses to Ozone After 3 Years in a Lysimeter Study with Juvenile Beech (Fagus sylvatica L.)

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant–soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003–2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen, C. P. (2003). Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 157, 213–228.

    Article  CAS  Google Scholar 

  • Aneja, M. K., Sharma, S., Fleischmann, F., Stich, S., Heller, W., Bahnweg, G., et al. (2006). Microbial colonization of beech and spruce litter–Influence of decomposition site and plant litter species on the diversity of microbial community. Microbial Ecology, 52, 127–135.

    Article  Google Scholar 

  • Aneja, M. K., Sharma, S., Fleischmann, F., Stich, S., Heller, W., Bahnweg, G., et al. (2007). Influence of ozone on litter quality and its subsequent effects on the initial structure of colonizing microbial communities. Microbial Ecology, 54, 151–160.

    Article  Google Scholar 

  • Bahnweg, G., Heller, W., Stich, S., Knappe, K., Betz, G., Heerdt, C., et al. (2005). Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biology, 7, 659–669.

    Article  CAS  Google Scholar 

  • Benton, J., Fuhrer, J., Gimeno, B. S., Skarby, L., Palmer-Brown, D., Ball, G., et al. (2000). An international cooperative programme indicates the widespread occurrence of ozone injury on crops. Agriculture, Ecosystems & Environment, 78, 19–30.

    Article  CAS  Google Scholar 

  • Bergmann, W. (1993). Ernährungsstörungen bei Kulturpflanzen. Jena: Fischer Verlag.

    Google Scholar 

  • Braun, S., Zugmaier, U., Thomas, V., & Flückiger, W. (2004). Carbohydrate concentrations in different plant parts of young beech and spruce along a gradient of ozone pollution. Atmospheric Environment, 38, 2399–2407.

    Article  CAS  Google Scholar 

  • Brügger, R. (1998). Die phänologische Entwicklung von Buchen und Fichten. Beobachtung, Variabilität, Darstellung und deren Nachvollzug in einem Modell. Bern: Verlag des Geographischen Instituts der Universität Bern.

    Google Scholar 

  • Dizengremel, P. (2001). Effects of ozone on the carbon metabolism of forest trees. Plant Physiology and Biochemistry, 39, 729–742.

    Article  CAS  Google Scholar 

  • Fuhrer, J., Skärby, L., & Ashmore, M. R. (1997). Critical levels for ozone effects on vegetation in Europe. Environmental Pollution, 97, 91–106.

    Article  CAS  Google Scholar 

  • Glick, R. E., Schlagnhaufer, C. D., Arteca, R. N., & Pell, E. J. (1995). Ozone-induced ethylene emission accelerates the loss of ribulose-1,5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves. Plant Physiology, 109, 891–898.

    CAS  Google Scholar 

  • Göttlicher, S., Knohl, A., Wanek, W., Buchmann, N., & Richter, A. (2006). Short-term changes in carbon isotope composition of soluble carbohydrates and starch: From canopy leaves to the root system. Rapid Communications in Mass Spectrometry, 20, 653–660.

    Article  CAS  Google Scholar 

  • Grams, T. E. E., Anegg, S., Häberle, K. H., Langebartels, C., & Matyssek, R. (1999). Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytologist, 144, 95–107.

    Article  CAS  Google Scholar 

  • Grams, T. E. E., Kozovits, A. R., Reiter, I. M., Winkler, J. B., Sommerkorn, M., Blaschke, H., et al. (2002). Quantifying competitiveness in woody plants. Plant Biology, 4, 153–158.

    Article  Google Scholar 

  • Gupta, P., Duplessis, S., White, H., Karnosky, D. F., Martin, F., & Podila, G. K. (2005). Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Phytologist, 167, 129–142.

    Article  CAS  Google Scholar 

  • Herbinger, K., Then, C., Low, M., Haberer, K., Alexous, M., Koch, N., et al. (2005). Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environmental Pollution, 137, 476–482.

    Article  CAS  Google Scholar 

  • Jehnes, S., Betz, G., Bahnweg, G., Haberer, K., Sandermann, H., & Rennenberg, H. (2007). Injury amplification reactions and tree internal signalling under ozone exposure in European beech (Fagus sylvatica) trees. Plant Biology, 9, 253–264.

    Article  CAS  Google Scholar 

  • Karlsson, P., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno, B. S., et al. (2004). New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmospheric Environment, 38, 2283–2294.

    Article  CAS  Google Scholar 

  • Karnosky, D. F., Zak, D. R., Pregitzer, K. S., Awmack, C. S., Bockheim, J. G., Dickson, R. E., et al. (2003). Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: A synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 17, 289–304.

    Article  Google Scholar 

  • Kiefer, E., Heller, W., & Ernst, D. (2000). A simple and efficient protocol for isolation of functional RNA from plant tissue rich in secondary metabolites. Plant Molecular Biology Reporter, 18, 33–39.

    Article  CAS  Google Scholar 

  • King, J. S., Kubiske, M. E., Pregitzer, K. S., Hendrey, G. R., McDonald, E. P., Giardina, C. P., et al. (2005). Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist, 168, 623–635.

    Article  CAS  Google Scholar 

  • Kozovits, A. R., Matyssek, R., Blaschke, H., Göttlein, A., & Grams, T. E. E. (2005a). Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentration throughout two subsequent growing seasons. Global Change Biology, 11, 1387–1401.

    Article  Google Scholar 

  • Kozovits, A. R., Matyssek, R., Winkler, J. B., Göttlein, A., Blaschke, H., & Grams, T. E. E. (2005b). Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytologist, 167, 181–196.

    Article  Google Scholar 

  • Langebartels, C., Schraudner, M., Heller, W., Ernst, D., & Sandermann, H. (2002a). Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In Oxidative stress in plants (pp. 105–135). London: Taylor & Francis.

    Google Scholar 

  • Langebartels, C., Wohlgemuth, H., Kschieschan, S., Grun, S., & Sandermann, H. (2002b). Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry, 40, 567–575.

    Article  CAS  Google Scholar 

  • Li, P., Mane, S. P., Sioson, A. A., Robinet, C. V., Heath, L. S., Bohnert, H. J., et al. (2006). Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant, Cell and Environment, 29, 854–868.

    Article  CAS  Google Scholar 

  • Lippert, M., Steiner, K., Payer, H.-D., Simons, S., Langebartels, C., & Sandermann, H. (1996). Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers. Trees – Structure and Function, 10, 268–275.

    Google Scholar 

  • Loos, C., Gayler, S., & Priesack, E. (2007). Assessment of water balance simulations for large-scale weighing lysimeters. Journal of Hydrology, 335, 259–270.

    Article  Google Scholar 

  • Löw, M., Herbinger, K., Nunn, A. J., Häberle, K. H., Leuchner, M., Heerdt, C., et al. (2006). Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees – Structure and Function, V20, 539–548.

    Google Scholar 

  • Lucas, P. W., Rantanen, L., & Mehlhorn, H. (1993). Needle chlorosis in Sitka spruce following a 3-year exposure to low concentrations of ozone – changes in mineral-content, pigmentation and ascorbic-acid. New Phytologist, 124, 265–275.

    Article  CAS  Google Scholar 

  • Luedemann, G., Matyssek, R., Fleischmann, F., & Grams, T. E. E. (2005). Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biology, 7, 640–649.

    Article  CAS  Google Scholar 

  • Matyssek, R., Agerer, R., Ernst, D., Munch, J. C., Oßwald, W., Pretzsch, H., et al. (2005). The pant's capacity in regulating resource demand. Plant Biology, 7, 560–580.

    Article  CAS  Google Scholar 

  • Matyssek, R., & Sandermann, H. (2003). Impact of ozone on trees: An ecophysiological perspective. In Progress in botany (pp. 349–404). Berlin: Springer Verlag.

  • Miller, J. D., Arteca, R. N., & Pell, E. J. (1999). Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiology, 120, 1015–1023.

    Article  CAS  Google Scholar 

  • Miyazaki, S., Fredricksen, M., Hollis, K. C., Poroyko, V., Shepley, D., Galbraith, D. W., et al. (2004). Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and O3. Field Crops Research, 90, 47–59.

    Article  Google Scholar 

  • Nunn, A. J., Anegg, S., Betz, G., Simons, S., Kalisch, G., Seidlitz, H. K., et al. (2005a). Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech. Plant Cell and Environment, 28, 886–897.

    Article  CAS  Google Scholar 

  • Nunn, A. J., Kozovits, A. R., Reiter, I. M., Heerdt, C., Leuchner, M., Lutz, C., et al. (2005b). Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environmental Pollution, 137, 494–506.

    Article  CAS  Google Scholar 

  • Nunn, A. J., Reiter, I. M., Häberle, K. H., Werner, H., Langebartels, C., Sandermann, H., et al. (2002). “Free-air” ozone canopy fumigation in an old-growth mixed forest: Concept and observations in beech. Phyton – Annales Rei Botanicae, 42, 105–119.

    CAS  Google Scholar 

  • Olbrich, M., Betz, G., Gerstner, E., Langebartels, C., Sandermann, H., & Ernst, D. (2005). Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.). Plant Biology, 7, 670–676.

    Article  CAS  Google Scholar 

  • Paoletti, E., Nali, C., & Lorenzini, G. (2002). Photosynthetic behavior of two Italian clones of European beech (Fagus sylvatica L.) exposed to ozone. Phyton-Annales Rei Botanicae, 42, 149–155.

    CAS  Google Scholar 

  • Pell, E. J., Schlagnhaufer, C. D., & Arteca, R. N. (1997). Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum, 100, 264–273.

    Article  CAS  Google Scholar 

  • Polle, A., Matyssek, R., Günthardt-Goerg, M. S., & Maurer, S. (2000). Defense strategies against ozone in trees: The role of nutrition. In Environmental pollution and plant responses pp. 223–245. Boca Raton: CRC.

  • Pritsch, K., Luedemann, G., Matyssek, R., Hartmann, A., Schloter, M., Scherb, H., et al. (2005). Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotrone experiment with spruce/beech mixed cultures. Plant Biology, 7, 718–727.

    Article  CAS  Google Scholar 

  • Reddy, G. B., Reinert, R. A., & Eason, G. (1991). Enzymatic changes in the rhizosphere of loblolly pine exposed to ozone and acid rain. Soil Biology and Biochemistry, 23, 1115–1119.

    Article  CAS  Google Scholar 

  • Reddy, G. B., Reinert, R. A., & Eason, G. (1995). Loblolly pine needle nutrient and soil enzyme activity as influenced by ozone and acid rain chemistry. Soil Biology and Biochemistry, 27, 1059–1064.

    Article  CAS  Google Scholar 

  • Samuelson, L., & Kelly, J. M. (2001). Tansley review no. 21. Scaling ozone effects from seedlings to forest trees. New Phytologist, 149, 21–41.

    Article  CAS  Google Scholar 

  • Sandermann, H., Ernst, D., Heller, W., & Langebarterls, C. (1998). Ozone: An abiotic elicitor of plant defence reactions. Trends in Plant Science, 3, 47–50.

    Article  Google Scholar 

  • Sandermann, H., & Matyssek, R. (2004). Scaling up from molecular to ecological processes. In Molecular ecotoxicology of plants (pp. 207–226). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Schloter, M., Winkler, J. B., Aneja, M., Koch, N., Fleischmann, F., Pritsch, K., et al. (2005). Short term effects of ozone on the plant-rhizosphere-bulk soil system of young beech trees. Plant Biology, 7, 728–736.

    Article  CAS  Google Scholar 

  • Schraudner, M., Langebartels, C., & Sandermann, H. (1997). Changes in the biochemical status of plants cells induced by the environmental pollutant ozone. Physiologia Pantarum, 100, 274–280.

    Article  CAS  Google Scholar 

  • Slovik, S., Balazs, A., & Siegmund, A. (1996). Canopy throughfall of Picea abies (L) Karst as depending on trace gas concentrations. Plant and Soil, 178, 295–310.

    Article  CAS  Google Scholar 

  • Thomas, V. F. D., Braun, S., & Fluckiger, W. (2006). Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica). Environmental Pollution, 143, 341–354.

    Article  CAS  Google Scholar 

  • Turunen, M., Heller, W., Stich, S., Sandermann, H., Sutinen, M. L., & Norokorpi, Y. (1999). The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic. Environmental Pollution, 106, 219–228.

    Article  CAS  Google Scholar 

  • van den Burg, J. (1985). Foliar analysis for determination of tree nutrient status – A compilation of literature data. Wageningen: Report No 414, Rijksinstituut voor onderzoek in de bos – en Landschapsbouw “de Dorschkamp”.

  • Werner, H., & Fabian, P. (2002). Free-air fumigation on mature trees: A novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environmental Science Pollution Research, 9, 117–121.

    Google Scholar 

  • Wipfler, P., Seifert, T., Heerdt, C., Werner, H., & Pretzsch, H. (2005). Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biology, 7, 611–618.

    Article  CAS  Google Scholar 

  • Wustman, B. A., Oksanen, E., Karnosky, D. F., Noormets, A., Isebrands, J. G., Pregitzer, K. S., et al. (2001). Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: Can CO2 ameliorate the harmful effects of O3? Environmental Pollution, 115, 473–481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study is part of the joined project SFB607 “Growth and Parasite Defence – Competition for Resources in Economic plants from Agronomy and Forestry” funded by the German Research Community (DFG). For technical support and skilled lab assistance we are grateful to Gudrun Hufnagel, Oliver Gefke, Elke Gerstner, Wolfgang Graf, Bistra Mihaylova, Dagmar Schneider and Ilse Süß.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pritsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritsch, K., Ernst, D., Fleischmann, F. et al. Plant and Soil System Responses to Ozone After 3 Years in a Lysimeter Study with Juvenile Beech (Fagus sylvatica L.). Water Air Soil Pollut: Focus 8, 139–154 (2008). https://doi.org/10.1007/s11267-007-9164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-007-9164-4

Keywords

Navigation