Skip to main content
Log in

Fault Tolerant Indoor Positioning Based on Federated Kalman Filter

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this article, multi-sensor indoor positioning, which is based on fusing tri-laterated position data of the target, is considered. A novel method, which is based on federated Kalman filtering and makes use of the fingerprint data, namely, federated Kalman filter with skipped covariance updating (FKF-SCU) is proposed. The data collected on two test beds are used in comparing the performances of the proposed algorithm and that of the regular federated filter. It is shown that the proposed algorithm provides fault tolerance and quick recovery, whenever signal reception from an access point is interrupted, as well as an improvement of 12.57% on the position accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

The collected data is provided at [31] and [32].

References

  1. Grewal, M. S., Andrews, A. P., & Bartone, C. G. (2013). Global Navigation Satellite Systems, Inertial Navigation, and Integration. Hoboken, NJ, USA: John Wiley & Sons.

    Google Scholar 

  2. Hall, D. L., & McMullen, S. A. H. (2004). Mathematical techniques in multisensor data fusion. Norwood, MA, USA: Artech House.

    Google Scholar 

  3. Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), 6–23.

    Article  Google Scholar 

  4. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics: Part C (Applications and Reviews), 37(6), 1067–1080. https://doi.org/10.1109/TSMCC.2007.905750

    Article  Google Scholar 

  5. Atashi, M., Salimibeni, M., & Mohammadi, A. (2022). Online Dynamic Window (ODW) Assisted two-stage LSTM frameworks for indoor localization. Journal of Signal Processing Systems, 94, 773–786. https://doi.org/10.1007/s11265-022-01752-9

    Article  Google Scholar 

  6. Pivato, P., Palopoli, L., & Petri, D. (2011). Accuracy of RSS-based centroid localization algorithms in an indoor environment. IEEE Transactions on Instrumentation and Measurement, 60, 3451–3460.

    Article  Google Scholar 

  7. Dong, Q., & Dargie, W. (2012). Evaluation of the reliability of RSSI for indoor localization (pp. 1–6). Clermont Ferrand: 2012 International Conference on Wireless Communications in Underground and Confined Areas. https://doi.org/10.1109/ICWCUCA.2012.6402492

    Book  Google Scholar 

  8. Kaemarungsi, K., & Krishnamurthy, P. (2012). Analysis of WLAN’s received signal strength indication for indoor location fingerprinting. Pervasive and Mobile Computing, 8(2), 292–316.

    Article  Google Scholar 

  9. Chai, M., Li, C., & Huang, H. (2020). A new indoor positioning algorithm of cellular and Wi-Fi networks. The Journal Of Navigation., 73, 509–529.

    Article  Google Scholar 

  10. Skog, I., & Handel, P. (2009). In-car positioning and navigation technologies – A survey. IEEE Transactions on Intelligent Transportation Systems, 10(1), 4–21.

    Article  Google Scholar 

  11. Sun, S.-L., & Deng, Z.-L. (2004). Multi-sensor optimal information fusion Kalman filter. Automatica, 40(6), 1017–1023.

    Article  MathSciNet  Google Scholar 

  12. Carlson, N. A. (1988). Federated filter for fault-tolerant integrated navigation systems (pp. 110–119). IEEE PLANS ’88.,Position Location and Navigation Symposium, Record. “Navigation into the 21st Century.” https://doi.org/10.1109/PLANS.1988.195473

    Book  Google Scholar 

  13. Lymberopoulos, D., Liu, J., Yang, X., Choudhury, R. R., Handziski, V., & Sen, S. (2015). A realistic evaluation and comparison of indoor location technologies: Experiences and lessons learned (pp. 178–189). Proceedings of the 14th International Conference on Information Processing in Sensor Networks. https://doi.org/10.1145/2737095.2737726

    Book  Google Scholar 

  14. Chen, G., Meng, X., Wang, Y., Zhang, Y., Tian, P., & Yang, H. (2015). Integrated WIFI/PDR/smartphone using an unscented Kalman filter algorithm for 3D indoor localization. Sensors, 15(9), 24595–24614.

    Article  Google Scholar 

  15. Hussein, A., Rahman, T., & Leow, C. (2015). Performance evaluation of localization accuracy for a log-normal shadow fading wireless sensor network under physical barrier attacks. Sensors, 15, 30545–30570.

    Article  Google Scholar 

  16. Jimenez Ruiz, A., Seco Granja, F., Prieto Honorato, J., & Guevara Rosas, J. (2012). Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements. IEEE Transactions on Instrumentation and Measurement, 61, 178–189.

    Article  Google Scholar 

  17. Ayabakan, T., & Kerestecioğlu, F. (2019). Multi-sensor indoor positioning (pp. 1–6). Samsun, Turkey: 2019 4th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/UBMK.2019.8907082

    Book  Google Scholar 

  18. Ayabakan, T., & Kerestecioğlu, F. (2018). Indoor positioning using federated Kalman filter (pp. 483–488). Sarajevo, Bosnia and Herzegovina: 2018 3rd International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/UBMK.2018.8566652

    Book  Google Scholar 

  19. Lv, L.-H., & Jin, H.-X. (2016). A fusion location algorithm based on federated Kalman filtering. 2016 4th International Conference on Machinery, Materials and Computing Technology (pp. 2001–2005). Atlantis Press. https://doi.org/10.2991/icmmct-16.2016.399

    Chapter  Google Scholar 

  20. Peng, P., Yu, C., Xia, Q., Zheng, Z., Zhao, K., & Chen, W. (2022). An indoor positioning method based on UWB and visual fusion. Sensors, 22, 1394.

    Article  Google Scholar 

  21. Xu, X., Pang, F., Ran, Y., Bai, Y., Zhang, L., Tan, Z., Wei, C., & Luo, M. (2021). An indoor mobile robot positioning algorithm based on adaptive federated Kalman filter. IEEE Sensors Journal, 21, 23098–23107.

    Article  Google Scholar 

  22. Ayabakan, T., & Kerestecioğlu, F. (2022). RSSI-based indoor positioning via adaptive federated Kalman filter. IEEE Sensors Journal, 22, 5302–5308.

    Article  Google Scholar 

  23. Hightower, J., & Borriello, G. (2001). Location systems for ubiquitous computing. Computer, 34(8), 01–08.

    Article  Google Scholar 

  24. Zekavat, R., & Buehrer, R. M. (2011). Handbook of position location: Theory, practice and advances. Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  25. Dag, T., & Arsan, T. (2018). Received signal strength based least squares lateration algorithm for indoor localization. Computers and Electrical Engineering, 66, 114–126.

    Article  Google Scholar 

  26. Röbesaat, J., Zhang, P., Abdelaal, M., & Theel, O. (2017). An improved BLE indoor localization with Kalman-based fusion: An experimental study. Sensors, 17(5), 951.

    Article  Google Scholar 

  27. Akl, R., Tummala, D., & Li, X. (2006). Indoor propagation modeling at 2.4 GHz for IEEE 802.11 networks (pp. 14–16). The Sixth IASTED International Multi-Conference on Wireless and Optical Communications.

    Google Scholar 

  28. Rappaport, T. S., et al. (1996). Wireless communications: Principles and practice. NJ, USA: Prentice Hall.

    Google Scholar 

  29. Gao, Y., Krakiwsky, E., Abousalem, M., & McLellan, J. (1993). Comparison and analysis of centralized, decentralized, and federated filters. Navigation, 40(1), 69–86.

    Article  Google Scholar 

  30. Carlson, N. A., & Berarducci, M. P. (1994). Federated Kalman filter simulation results. Navigation, 41(3), 297–322.

    Article  Google Scholar 

  31. Ayabakan, T., & Kerestecioğlu, F. (2021). Wi-Fi RSSI data set for indoor localization. IEEE Dataport. https://doi.org/10.21227/dpne-5785

    Article  Google Scholar 

  32. Ayabakan, T. (2021). Indoor environment WIFI-RSSI data set. Mendeley Data.

    Google Scholar 

  33. Xue, W., Qiu, W., Hua, X., & Yu, K. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 17, 2224–2230.

    Article  Google Scholar 

  34. Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2004). Estimation with applications to tracking and navigation: Theory algorithms and software. John Wiley & Sons.

    Google Scholar 

  35. Chintalapudi, K., Padmanabha Iyer, A., & Padmanabhan, V. N. (2010). Indoor localization without the pain (pp. 173–184). Proceedings of 16th Annual International Conference on Mobile Computing and Networking. https://doi.org/10.1145/1859995.1860016

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarık Ayabakan.

Ethics declarations

Ethics Approval

Research involved no Human Participants and/or Animals.

Conflict of Interest

The authors have no conflict of interest/competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The list of abbreviations used above are given in Table 7.

Table 7 List of Abbreviations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayabakan, T., Kerestecioğlu, F. Fault Tolerant Indoor Positioning Based on Federated Kalman Filter. J Sign Process Syst (2024). https://doi.org/10.1007/s11265-024-01913-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11265-024-01913-y

Keywords

Navigation