Skip to main content
Log in

Design and Implementation of a Blind Adaptive Equalizer Using Frequency Domain Improved Square Contour Algorithm

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Improved Square Contour Algorithm (ISCA) is a blind adaptive equalization technique which employs estimated outputs from the decision device along with the dispersion constant in its cost function, thereby, forcing the equalizer outputs to lie on multiple zero error square moduli instead of a single contour in Square Contour Algorithm (SCA). This leads to greater ISI suppression and an improved convergence rate. In this paper, frequency domain implementation of block based ISCA is developed. Simulation results show that the FDISCA exhibits similar performance as time domain ISCA but with a significantly lower computational complexity. However, by employing normalization in the frequency bins, a noteworthy improvement in the convergence rate for FD-ISCA is observed. Complete hardware architecture of FD-ISCA along with its simulation results is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Sklar, B. “Digital communications: fundamentals and applications”.

  2. Godard, D. N. (1980). Self-recovering equalization and carrier tracking in two-dimensional data communication systems”. IEEE Transactions on Communications, COM-24, 656–864.

    Google Scholar 

  3. Yang, J., Werner, J. J., & Dumont, G. A. (2002). The multimodulus blind equalization and its generalized algorithms”. IEEE Journal of Selected Areas Communication, 20(5), 997–1015.

    Article  Google Scholar 

  4. Thaiupathump, T., He, L., & Kassam, S. A. (2006). Square contour algorithm for blind equalization of QAM signals”. Signal Processing, 86(11), 3357–3370.

    Article  MATH  Google Scholar 

  5. Sheikh, S. A., & Fan, P. (2008). New blind equalization techniques based on Improved Square Contour Algorithm”. Elsevier Journal on Digital Signal Processing, 18(8), 680–693.

    Article  Google Scholar 

  6. Treichler, J. R., Larimore, M. G., & Harp, J. C. (1998). Practical blind demodulators for High-order QAM signals. Proceedings of the IEEE Special Issue on Blind System Identification and Estimation, 86, 1907–1926.

    Google Scholar 

  7. Gul, M., & Sheikh, S. (2010). Design and implementation of a blind adaptive equalizer using Frequency Domain Square Contour Algorithm. Digital Signal Processing, 20(6), 1697–1710.

    Article  Google Scholar 

  8. Shynk, J. (1989). “Frequency-domain implementations of the constant modulus algorithm”, in: 23rd Asilomer Conference on Signals, Systems and Computers.

  9. Dam, H.H. et al.(2003). “Frequency domain constant modulus algorithm for broadband wireless systems”, in: IEE GLOBECOM.

  10. Banovi ‘ c, K., Khalid, M. A. S., & Abdel-Raheem, E. (2007). A configurable fractionally-spaced blind adaptive equalizer for QAM demodulators”. Digital Signal Processing, 17(6), 1071–1088.

    Article  Google Scholar 

  11. Thaiupatump, T., Kassam, S.A. (2003). Square contour algorithm: “a new algorithm for blind equalization and carrier phase recovery”, in: Proc. 37th Asilomar Conference on Signals, Systems and Computers 647–651.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Abid Khan.

Appendix A

Appendix A

As mentioned before, for blind equalizer adjustment, a scheme to minimize a special type of non-MSE cost function involving the statistical characteristics of the transmitted data and the output of the equalizer needs to be employed. The generalized expression for the cost function for ISCA is given by [5]:

$$ {J}_{ISCA,n} = \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2p$}\right.\kern0.5em E\left\{{\left[{\left(\left|{z}_{R,n}+{z}_{I,n}\right|+\left|{z}_{R,n} - {z}_{I,n}\right|\ \right)}^2 - {\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right]}^p\right\} $$
(1)

where p is an integer and its value depending on performance and complexity of implementation is usually set as p = 2 [11]. The error signal is found using the Stochastic Gradient Decent (SGD) Algorithm as:

$$ {e}_n=\raisebox{1ex}{$\partial {J}_n$}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right. $$
(2)

Substituting p = 2 in (1) and computing its gradient:

$$ \begin{array}{l}\raisebox{1ex}{$\partial {J}_n$}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.=\kern0.5em \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.\kern0.5em \left[\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\kern0.5em E\left\{{\left[{\left(|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}|\ \right)}^2 - {\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right]}^2\right\}\right]\\ {} = \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\ *\ 2*\left\{{\left(|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}|\ \right)}^2 - {\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right\}\ \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.E\left\{{\left(|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}|\ \right)}^2 - {\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right\}\\ {} = \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\ *\ 2*\left\{{\left(|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}|\ \right)}^2 - {\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right\}\ *\\ {}\kern1em \left\{\raisebox{1ex}{$\partial E$}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.\left[{\left(|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}|\ \right)}^2\right] - \raisebox{1ex}{$\partial E$}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.\left[{\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right]\right\}\end{array} $$

Since the value of Λ n (2R ISCA )2 does not depend on the tap weights wn,\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.\left[{\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right]=0 \). So,

$$ \begin{array}{l}\raisebox{1ex}{$\partial {J}_n$}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.=\kern0.5em \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\ *\ 4*\left\{{\left(|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}|\ \right)}^2 - {\varLambda}_n{\left(2{R}_{ISCA}\right)}^2\right\}\ *\\ {}\kern4em \left(\left|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}\right|\right)\ *\left\{\raisebox{1ex}{$\partial E$}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.\left[|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n} - {z}_{I,n}|\ \right]\right\}\end{array} $$

We know from the properties of signum function that \( \frac{d}{dx}\left|{x}_r+{x}_i\right|=c\operatorname{sgn}\left({x}_r+{x}_i\right)=\operatorname{sgn}\left({x}_r\right)+j*\operatorname{sgn}\left({x}_i\right) \). Thus,

$$ \begin{array}{l}e(n)\kern0.5em =\kern0.5em \raisebox{1ex}{$\partial {J}_n$}\!\left/ \!\raisebox{-1ex}{$\partial {w}_n$}\right.=\kern0.5em \left\{{\left(\left|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n}-{z}_{I,n}\right|\right)}^2-{\varLambda}_n*{R}_{ISCA}^2\right\}*\left(\left|{z}_{R,n}+{z}_{I,n}|+|{z}_{R,n}-{z}_{I,n}\right|\right)*\\ {}\kern7.25em \left\{\left(\operatorname{sgn}\left({z}_{R,n}+{z}_{I,n}\right)+\operatorname{sgn}\left({z}_{R,n}-{z}_{I,n}\right)+j\left(\operatorname{sgn}\left({z}_{R,n}+{z}_{I,n}\right)+\operatorname{sgn}\right({z}_{R,n}-{z}_{I,n}\right)\right\}\end{array} $$
(3)

is the error function used to compute the tap weight vectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Sheikh, S.A. Design and Implementation of a Blind Adaptive Equalizer Using Frequency Domain Improved Square Contour Algorithm. J Sign Process Syst 85, 235–247 (2016). https://doi.org/10.1007/s11265-015-1072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1072-7

Keywords

Navigation