Skip to main content
Log in

A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., & Kalker, T. (2008). Digital Watermarking and Steganography. Morgan Kaufmann Publishers.

  2. (1965) In Abramowitz, M., & Stegun, I. (Eds.), Handbook of Mathematical Functions. Applied Mathematics Series: National Bureau of Standards.

  3. Bishop, C.M. (2006). Pattern Recognition and Machine Learning. New York: Springer–Verlag.

    MATH  Google Scholar 

  4. Lin, C.J., Weng, R.C., & Keerthi, S.S. (2008). Trust region Newton method for large-scale logistic regression. Journal of Machine Learning Research, 9, 627–650.

    MathSciNet  MATH  Google Scholar 

  5. Feng, J.B., Lin, I.C., Tsai, C.S., & Chu, Y.P. (2006). Reversible Watermarking: Current Status and Key Issues. International Journal of Network Security, 2(3), 161–171.

    Google Scholar 

  6. Fridrich, J., Goljan, M., & Du, R. (2002). Lossless Data Embedding – New Paradigm in Digital Watermarking. EURASIP Journal of Signal Processing, 2002(2), 185–196.

    Article  MATH  Google Scholar 

  7. Hu, Y., Lee, H.K., & Li, J. (2010). DE–Based Reversible Data Hiding With Improved Overflow Location Map. IEEE Transactions on Circuits and Systems for Video Technology, 19(2), 250–260.

    Google Scholar 

  8. Wang, X., Li, X., Yang, B., & Guo, Z. (2010). Efficient Generalized Integer Transform for Reversible Watermarking. IEEE Signal Processing Letters, 17(6), 567–570.

    Article  Google Scholar 

  9. Li, X., Zhang, W., Gui, X., & Yang, B. (2013). A Novel Reversible Data Hiding Scheme Based on Two–Dimensional Difference–Histogram Modification. IEEE Transactions on Information Forensics and Security, 8 (7), 1091–1100.

    Article  Google Scholar 

  10. Tai, W.L., Yeh, C.M., & Chan, C.C. (2009). Reversible Data Hiding Based on Histogram Modification of Pixel Differences. IEEE Transactions on Circuits and Systems for Video Technology, 19(6), 906–910.

    Article  Google Scholar 

  11. Lin, C.C., Tai, W.L., & Chang, C.C. (2008). Multilevel Reversible Data Hiding based on Histogram Modification of Difference Images. Pattern Recognition, 41(12), 3582–3591.

    Article  MATH  Google Scholar 

  12. Yang, B., Schmucker, M., Funk, W., Busch, C., & Sun, S. (2004). Integer DCT–based Reversible Watermarking Technique for Images using Companding Technique. Proceedings of SPIE, 5306, 405–415.

    Article  Google Scholar 

  13. Luo, L., Chen, Z., Chen, M., Zeng, X., & Xiong, Z. (2010). Reversible Image Watermarking using Interpolation Technique. IEEE Transactions on Information Forensics and Security, 5(1), 187–193.

    Article  Google Scholar 

  14. Naskar, R., & Chakraborty, R.S. (2012). Reversible Watermarking Utilizing Weighted-median based Prediction. IET Image Processing, 6(5), 507–520.

    Article  MathSciNet  Google Scholar 

  15. Sachnev, V., Kim, H.J., Nam, J., Suresh, S., & Shi, Y.Q. (2009). Reversible Watermarking Algorithm Using Sorting and Prediction. IEEE Trans. on Circuits and Systems for Videotechnology, 19(7), 989–999.

    Google Scholar 

  16. Dragoi, C., & Coltuc, D. (2012). Improved Rhombus Interpolation for Reversible Watermarking by Difference Expansion. In 20th European Signal Processing Conference (EUSIPCO 2012).

  17. Lin, S., & Costello, D. J. (2004). Error Control Coding (2nd edition): Prentice Hall.

  18. Sobolewski, J. (2003). Cyclic redundancy check. Encyclopedia of Computer Science, 476–479.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchira Naskar.

Appendix: Detailed Derivations

Appendix: Detailed Derivations

The general form of a linear combination of k Gaussian functions (Gaussian–k), generated by the MATLAB Curve Fitting Toolbox, is:

$$ f^{k}(x) = \displaystyle \sum\limits_{i=1}^{k} a_{i} e^{{- \left( \frac{x - b_{i}}{c_{i}}\right)}^{2}} $$
(A.1)

In this paper, functions f p and f Δ are empirically estimated as a linear combination of multiple Gaussian functions, i.e. f p =f k(p) and f Δ=f l(Δ) respectively, where 1≤k,l≤8.

In this section, we derive the general forms of the results presented in Eqs. 30 and 37, for E[C a p a c i t y] and E[M S E] respectively. In our derivations the following two standard integrals [2] have been used:

$$\begin{array}{@{}rcl@{}} \int e^{-(ax^{2}\! +\! 2bx + c)} \,dx &=& \frac{1}{2} \sqrt{\frac{\pi}{2}} \cdot e^{\frac{b^{2} - ac}{a}} \cdot erf\left( \sqrt{a}x \,+\, \frac{b}{\sqrt{a}}\right)\\ &&+ \text{constant}, \quad (a \neq 0) \end{array} $$
(A.2)
$$ \int erf(x) \,dx = x ~erf(x) + \frac{1}{\sqrt{\pi}}e^{-x^{2}} + \text{constant} $$
(A.3)

where e r f(x) is a special mathematical function called the Error Function [2], which is defined as \(erf(x)= \frac {2}{\sqrt {\pi }} {\displaystyle {\int }_{0}^{x}} e^{-t^{2}} \,dt\).

Next we compute six integrals I 1 through I 6, using Eqs. A.2 and A.3 above, which will be useful in the subsequent steps to derive the closed form expressions for E[C a p a c i t y] and E[M S E].

$$\begin{array}{@{}rcl@{}} I_{1} &=& \int e^{-x^{2}} \,dx \\ &=& \frac{1}{2} \sqrt{\pi} ~erf(x) + \text{constant} \end{array} $$
(A.4)
$$\begin{array}{@{}rcl@{}} I_{2} &=& \int x e^{-x^{2}} \,dx \\ &=& \int \frac{1}{2} e^{-t} \,dt \left[ \text{substituting \(t=x^{2}\)} \right] \\ &=& -\frac{1}{2} e^{-t} + \text{constant} \\ &=& -\frac{1}{2} e^{-x^{2}} + \text{constant} \end{array} $$
(A.5)

I 3 is evaluated by repeated application of the rule of integration by parts:

$$\begin{array}{@{}rcl@{}} I_{3} &=& \int x^{2} e^{-x^{2}} \,dx = x^{2} \int e^{-x^{2}} \,dx - \int 2x \left[ \int e^{-x^{2}} \,dx \right] \,dx \\ &=& \frac{\sqrt{\pi}}{2} x^{2} ~erf(x) - \sqrt{\pi} \int x ~erf(x) \,dx \\ &=& \frac{\sqrt{\pi}}{2} x^{2} ~erf(x) - \sqrt{\pi} \left[ \frac{x^{2}}{2} ~erf(x) \,+\, \frac{x}{2 \sqrt{\pi}}e^{-x^{2}} \,-\, \frac{1}{4} erf(x) \right]\\ &&+ \text{constant} \\ &=& \frac{\sqrt{\pi}}{4} erf(x) - \frac{x}{2} e^{-x^{2}} + \text{constant} \end{array} $$
(A.6)
$$\begin{array}{@{}rcl@{}} \left[ \begin{array}{l} \displaystyle \because \int x ~erf(x) \,dx = x \int erf(x) \,dx - \int \left[ \int erf(x) \,dx \right] \,dx \\ \displaystyle \quad\quad= x \left[ x ~erf(x) + \frac{1}{\sqrt{\pi}}e^{-x^{2}} \right] - \int \left[ x ~erf(x) + \frac{1}{\sqrt{\pi}}e^{-x^{2}} \right] \,dx \\ \displaystyle \quad\quad= \frac{x^{2}}{2} ~erf(x) + \frac{x}{2 \sqrt{\pi}}e^{-x^{2}} - \frac{1}{4} erf(x) + \text{constant} \end{array} \right] \end{array} $$

We find the next three integrals I 4, I 5, I 6 as definite integrals, with their upper and lower limits of integration set to U and L respectively.

$$\begin{array}{@{}rcl@{}} \left. {I_{4}^{k}}\right|^{U}_{L} &=& {{\int}^{U}_{L}} f^{k}(x) \,dx \\ &=& \sum\limits_{i=1}^{k} {{\int}_{L}^{U}} a_{i} e^{- \left( \frac{x - b_{i}}{c_{i}} \right)^{2}} \,dx \\ &=& \sum\limits_{i=1}^{k} {\int}_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} a_{i} c_{i} e^{-t^{2}} \,dt \left[ \text{substituting}{\kern5pt} t\,=\,\frac{x - b_{i}}{c_{i}}\right] \\ &=& \sum\limits_{i=1}^{k} a_{i} c_{i} \left[ \frac{\sqrt{\pi}}{2} erf(t) \right]_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} \\ &=& \frac{\sqrt{\pi}}{2} \sum\limits_{i=1}^{k} a_{i} c_{i} \left[ erf\left( \frac{U - b_{i}}{c_{i}} \right) \,-\, erf\left( \frac{L - b_{i}}{c_{i}} \right) \right]\\ \end{array} $$
(A.7)
$$\begin{array}{@{}rcl@{}} \left. {I_{5}^{k}}\right|^{U}_{L} &=& {{\int}^{U}_{L}} x f^{k}(x) \,dx = \displaystyle\sum\limits_{i=1}^{k} {{\int}_{L}^{U}} x ~a_{i} e^{- \left( \frac{x - b_{i}}{c_{i}} \right)^{2}} \,dx \\ &=& \displaystyle\sum\limits_{i=1}^{k} {\int}_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} (c_{i} t + b_{i}) a_{i} e^{-t^{2}} c_{i} \,dt\\ &&\left[ \text{substituting}{\kern5pt} t=\frac{x - b_{i}}{c_{i}}\right] \\ &=& \displaystyle\sum\limits_{i=1}^{k}\left[ a_{i} {c_{i}^{2}} {\int}_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} te^{-t^{2}} \,dt + a_{i} b_{i} c_{i} {\int}_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} e^{-t^{2}} \,dt \right] \\ &=& \displaystyle\sum\limits_{i=1}^{k} a_{i} {c_{i}^{2}} \left[ - \frac{1}{2} e^{-t^{2}} \right]_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} + \displaystyle\sum\limits_{i=1}^{k} a_{i} b_{i} c_{i} \left[ \frac{\sqrt{\pi}}{2} erf(t) \right]_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} \\ &=& - \frac{1}{2} \displaystyle\sum\limits_{i=1}^{k} a_{i} {c_{i}^{2}} \left[ e^{-\left( \frac{U - b_{i}}{c_{i}}\right)^{2}} - e^{-\left( \frac{L - b_{i}}{c_{i}}\right)^{2}} \right] \\ &&+ \frac{\sqrt{\pi}}{2} \displaystyle\sum\limits_{i=1}^{k} a_{i} b_{i} c_{i} \left[ erf\left( \frac{U - b_{i}}{c_{i}}\right) - erf\left( \frac{L - b_{i}}{c_{i}}\right) \right]\\ \end{array} $$
(A.8)
$$\begin{array}{@{}rcl@{}} \left. {I_{6}^{k}}\right|^{U}_{L} &=& {{\int}^{U}_{L}} x^{2} f^{k}(x) \,dx = \displaystyle\sum\limits_{i=1}^{k} {{\int}_{L}^{U}} x^{2} ~a_{i} e^{- \left( \frac{x - b_{i}}{c_{i}} \right)^{2}} \,dx \\ &=&\! \displaystyle\sum\limits_{i=1}^{k} {\int}_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} (c_{i} t \,+\, b_{i})^{2} a_{i} e^{-t^{2}} c_{i} \,dt \!\left[ \text{substituting}{\kern2pt} t\,=\,\frac{x - b_{i}}{c_{i}}\!\right] \\ &=&\! \displaystyle\sum\limits_{i=1}^{k} a_{i} {c_{i}^{3}} {\int}_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} t^{2} e^{-t^{2}} \,dt + \displaystyle\sum\limits_{i=1}^{k} 2 a_{i} b_{i} {c_{i}^{2}} {\int}_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}} t e^{-t^{2}} \,dt\\ &&+ \displaystyle\sum\limits_{i=1}^{k} a_{i} {b_{i}^{2}} c_{i} {\int}_{\frac{L - b_{i}} {c_{i}}}^{\frac{U - b_{i}}{c_{i}}} e^{-t^{2}} \,dt \\ &=&\! \displaystyle\sum\limits_{i=1}^{k} a_{i} {c_{i}^{3}} \left[ \frac{\sqrt{\pi}}{4} erf(t) - \frac{t}{2} e^{-t^{2}} \right]_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}}\\ &&+ \displaystyle\sum\limits_{i=1}^{k} 2 a_{i} b_{i} {c_{i}^{2}} \left[ -\frac{1}{2} e^{-t^{2}} \right]_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}}\\ &&+ \displaystyle\sum\limits_{i=1}^{k} a_{i} {b_{i}^{2}} c_{i} \left[ \frac{\sqrt{\pi}}{2} erf(t) \right]_{\frac{L - b_{i}}{c_{i}}}^{\frac{U - b_{i}}{c_{i}}}\\ &=&\! \sum\limits_{i=1}^{k} a_{i} {c_{i}^{3}} \left[ \frac{\sqrt{\pi}}{4} erf\left( \frac{U - b_{i}}{c_{i}}\right) - \left( \frac{U - b_{i}}{2c_{i}}\right) e^{-\left( \frac{U - b_{i}}{c_{i}}\right)^{2}}\right.\\ &&- \left.\frac{\sqrt{\pi}}{4} erf\left( \frac{L - b_{i}}{c_{i}}\right) + \left( \frac{L - b_{i}}{2c_{i}}\right) e^{-\left( \frac{L - b_{i}}{c_{i}}\right)^{2}} \right]\\&& - \displaystyle\sum\limits_{i=1}^{k} a_{i} b_{i} {c_{i}^{2}} \left[ e^{-\left( \frac{U - b_{i}}{c_{i}}\right)^{2}} - e^{-\left( \frac{L - b_{i}}{c_{i}}\right)^{2}} \right]\\ &&+ \frac{\sqrt{\pi}}{2} \displaystyle\sum\limits_{i=1}^{k} a_{i} {b_{i}^{2}} c_{i} \left[ erf\left( \frac{U - b_{i}}{c_{i}}\right) - erf\left( \frac{L - b_{i}}{c_{i}}\right) \right]\\ \end{array} $$
(A.9)

Finally, we derive the general, closed form expressions for E[C a p a c i t y] and E[M S E] in terms of I 1, I 2I 6, from the results of Eqs. 30 and 37 respectively. In our derivations, f p and f Δ are considered as linear combinations of k and l Gaussian functions respectively (1≤k,l≤8). By Eq. 30,

$$\begin{array}{@{}rcl@{}} E[Capacity] &=& \frac{\mathcal{N}}{mn}{\int}_{0}^{255}f_{p}\,dp {\int}_{-\mathcal{T}}^{\mathcal{T}} f_{\Delta} \,d{\Delta} \\ &=& \frac{\mathcal{N}}{mn} {\int}_{0}^{255} f^{k}(p) \,dp {\int}_{-\mathcal{T}}^{\mathcal{T}} f^{l}({\Delta}) \,d{\Delta} \\ &=& \frac{\mathcal{N}}{mn} \times \left. ~{I_{4}^{k}} \right|^{255}_{0} \times \left. ~{I_{4}^{l}} \right|_{-\mathcal{T}}^{\mathcal{T}} \end{array} $$
(A.10)

By Eq. 37,

$$\begin{array}{@{}rcl@{}} E[MSE] &=& \frac{\mathcal{N}}{mn} \left[ {\int}_{-\mathcal{T}}^{\mathcal{T}} \frac{{\Delta}^{2}}{2} f_{\Delta} \,d{\Delta} + {\int}_{-\mathcal{T}}^{0} \frac{({\Delta} - 1)^{2}}{2} f_{\Delta} \,d{\Delta}\right. \\ && + {\int}_{0}^{\mathcal{T}} \frac{({\Delta} + 1)^{2}}{2} f_{\Delta} \,d{\Delta} + \left.{\int}_{-255}^{-\mathcal{T}} (-\mathcal{T} - 1)^{2} f_{\Delta} \,d{\Delta}\right. \\ && + \left.{\int}_{\mathcal{T}}^{255} (\mathcal{T} + 1)^{2} f_{\Delta} \,d{\Delta} \right]\\ &=& \frac{\mathcal{N}}{mn} \left[ \frac{1}{2} {\int}_{-\mathcal{T}}^{\mathcal{T}} {\Delta}^{2} f^{l}({\Delta}) \,d{\Delta} + \frac{1}{2} {\int}_{-\mathcal{T}}^{0} {\Delta}^{2} f^{l}({\Delta}) \,d{\Delta} \right. \\ && -{\int}_{-\mathcal{T}}^{0} {\Delta} f^{l}({\Delta}) \,d{\Delta}+ \frac{1}{2} {\int}_{-\mathcal{T}}^{0} f^{l}({\Delta}) \,d{\Delta} \\ && + \frac{1}{2} {\int}^{\mathcal{T}}_{0} {\Delta}^{2} f^{l}({\Delta}) \,d{\Delta} + {\int}^{\mathcal{T}}_{0} {\Delta} f^{l}({\Delta}) \,d{\Delta} \\ && + \frac{1}{2} {\int}^{\mathcal{T}}_{0} f^{l}({\Delta}) \,d{\Delta} + (\mathcal{T}+1)^{2} {\int}_{-255}^{-\mathcal{T}} f^{l}({\Delta}) \,d{\Delta}\\ &&+ \left.(\mathcal{T}+1)^{2} {\int}^{255}_{\mathcal{T}} f^{l}({\Delta}) \,d{\Delta} \right] \\ &=& \frac{\mathcal{N}}{mn} \left[ \frac{1}{2} \left. {I_{6}^{k}} \right|_{-\mathcal{T}}^{\mathcal{T}} + \frac{1}{2} \left. {I_{6}^{k}} \right|_{-\mathcal{T}}^{0} - \left. {I_{5}^{k}} \right|_{-\mathcal{T}}^{0} + \frac{1}{2} \left. {I_{4}^{k}} \rule[14pt]{0pt}{0pt} \right|_{-\mathcal{T}}^{0} \right.\\ && + \frac{1}{2} \left. {I_{6}^{k}} \rule[14pt]{0pt}{0pt} \right|^{\mathcal{T}}_{0} + \left. {I_{5}^{k}} \rule[14pt]{0pt}{0pt} \right|^{\mathcal{T}}_{0} + \frac{1}{2} \left. {I_{4}^{k}} \right|^{\mathcal{T}}_{0} + (\mathcal{T}+1)^{2} \left. {I_{4}^{k}} \right|_{-255}^{-\mathcal{T}}\\ &&+ \left.(\mathcal{T}+1)^{2} \left. {I_{4}^{k}} \rule[14pt]{0pt}{0pt} \right|^{255}_{\mathcal{T}} \right] \end{array} $$
(A.11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, R., Chakraborty, R.S. A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms. J Sign Process Syst 82, 373–389 (2016). https://doi.org/10.1007/s11265-015-1009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1009-1

Keywords

Navigation