Skip to main content
Log in

Impulse Noise Correction in OFDM Systems

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In orthogonal frequency division multiplexing (OFDM) systems, the impulse noise causes catastrophic accuracy degradation since the impulse noise affects all the subcarriers in a symbol due to the fast Fourier transform (FFT) operations at the receiver. Potential causes of impulse noise include erasure channel, power switching, and circuit failure in integrated circuits. In this paper, from a practical observation, a novel iterative impulse error correction scheme is proposed. This scheme is referred to as the impulse noise location and value search algorithm, which is based on the crucial observation of the relationship of the impulse noise and the symbol constellation. In a 512-FFT OFDM system at 25 dB additive white Gaussian noise signal-to-noise ratio, for quadrature amplitude modulation (QAM)-4 and QAM-8 modulation, simulation results show that our proposed novel scheme can effectively correct impulse errors that corrupt up to 20.7 % and 13.9 % of the received time-domain signal at known locations. In addition, without the knowledge of impulse noise location, the proposed scheme still can correct at least 9.96 % of the received time-domain signal for QAM-4 modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Hamming, R.W. (1950). Error detecting and error correcting codes. Bell System Technical Journal, 29, 147–60.

    Article  MathSciNet  Google Scholar 

  2. Bose, R.C., & Ray-Chaudhuri, D.K. (1960). On a class of error correcting binary group codes. Information and Control, 3, 68–79.

    Article  MATH  MathSciNet  Google Scholar 

  3. Reed, I.S., & Solomon, G. (1961). Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 9, 107–214.

    Google Scholar 

  4. Berrou, C., & Glavieux, A. (1996). Near Optimum error correcting and decoding: turbo-codes. IEEE Transactions on Communications, 44(10), 1261–71.

    Article  Google Scholar 

  5. Marshall, Jr. T. (1984). Coding of real-number sequences for error correction: a digital signal processing problem. IEEE Journal on Selected Areas in Communications, 2(2), 381–392.

    Article  Google Scholar 

  6. Wolf, J.K. (1983). Redundancy, the discrete fourier transform, and impulse noise cancellation. IEEE Transactions on Communications, 31(3), 458–461.

    Article  Google Scholar 

  7. Rath, G., & Guillemot, C. (2004). Frame-theoretic analysis of DFT codes with erasures. IEEE Transactions on Signal Processing, 52(2), 447–460.

    Google Scholar 

  8. Rath, G., Henocq, X., Guillemot, C. (2001). Application of DFT codes for robustness to erasures. In Proceedings IEEE GloblCom. (Vol. 2, pp.1246–1250). San Antonio, TX.

  9. Middleton, D. (1983). Canonical and quasi-canonical probability models of class a interference. IEEE Transactions on Electromagnetic Compatibility, 25(2), 76–106.

    Article  Google Scholar 

  10. Middleton, D. (1999). Non-Gaussian noise model in signal processing for telecommunications: new methods and results for Class A and Class B noise models. IEEE Transactions on Information Theory, 45(4), 1129–1149.

    Article  MATH  MathSciNet  Google Scholar 

  11. Haring, J., & Han Vinck, A.J. (2000). OFDM transmission corrupted by impulsive noise. Proc. Int. Symp. Powerline Communications (ISPLC) (pp. 9–14).

  12. Haring, J., & Han Vinck, A.J. (2003). Iterative decoding of codes over complex numbers for impulsive noise channels. IEEE Transactions on Information Theory, 49(5), 1251–1260.

    Article  Google Scholar 

  13. Hagenauer, J., Offer, E., Papke, L. (1996). Iterative decoding of binary block and convolutional codes. IEEE Transactions on Information Theory, 42(2), 429–445.

    Article  MATH  Google Scholar 

  14. Liu, R., & Parhi, K.K. Sparse severe error removal in OFDM demodulators for erasure channels. In Proceedings of 2009 IEEE workshop on signal processing systems (pp. 1–6). Tampere, Finland.

  15. Liu, R., & Parhi, K.K. Systems and methods for sparse error removal in communications systems, US patent application 13/200,950, Filed, 5 Oct. 2011.

Download references

Acknowledgments

This research was supported in part by the National Science Foundation under grant CCF-0811456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te-Lung Kung.

Appendices

Appendix A: Proof of Probability of Correct Demodulation for PAM-2 Modulation

Figure 20 illustrates the area of correct demodulation for PAM-2 modulation. The transmitted symbol s f is either 1 or -1. In Fig. 20, if s f = 1, the area of correct demodulation Ar ea 1 is

$$\begin{array}{rll} Area_{1} & = & \pi r^{2}-\pi r^{2}\left(\frac{\theta}{2\pi}\right)+\sqrt{r^{2}-1} \\ \\ \theta & = & \arccos\left(\frac{2-r^{2}}{r^{2}}\right), \end{array} $$
(13)

where x-axis and y-axis represent the real part and imaginary part of the reconstructed symbol, respectively. Then, the probability of correct demodulation for PAM-2 modulation p 2 is

$$\begin{array}{rll} p_{2} & = & \frac{1}{2}\left[\frac{Area_{1}}{\pi r^{2}}+\frac{Area_{-1}}{\pi r^{2}}\right] \\ & = &\begin{cases} 1, \ r\leq1 \\ \frac{1}{\pi r^{2}}\left[\pi r^{2}\left(\frac{2\pi-\theta}{2\pi}\right)+\sqrt{r^{2}-1}\right], \ r>1 \\ \end{cases} \\ \theta &=& \arccos\left(\frac{2-r^{2}}{r^{2}}\right). \end{array} $$
(14)

This corresponds to (8).

Figure 20
figure 20

Area of concern to calculate p 2 for PAM-2 modulation.

Appendix B: Proof of Probability of Correct Demodulation for QAM-4 Modulation

Figure 21 illustrates the area of correct demodulation for QAM-4 modulation. The transmitted symbol s f is randomly chosen from {±1±j} or {(±1,±1)}. For QAM-4, two cases \(1< r\leq \sqrt {2}\) and \(r>\sqrt {2}\) need to be considered separately. When \(1< r\leq \sqrt {2}\) in Fig. 21(a), if s f = 1+j = (1,1), the area of correct demodulation \(Area_{s_{f}}\) is

$$ \begin{array}{rll} Area_{s_{f}} &=& \pi r^{2}-\pi r^{2}\left(\frac{2\theta_{1}}{2\pi}\right)+2\sqrt{r^{2}-1} \\ \theta_{1} &=& \arccos\left(\frac{2-r^{2}}{r^{2}}\right). \end{array} $$
(15)
Figure 21
figure 21

Areas of concern to calculate p 4 for QAM-4 modulation, including (a) \(1< r\leq \sqrt {2}\) and (b) \(r>\sqrt {2}\).

In addition, when \(r>\sqrt {2}\) in Fig. 21b, if s f = 1+j, the area of correct demodulation \(Area_{s_{f}}\) is

$$\begin{array}{rll} Area_{s_{f}} & = & \pi r^{2}\left(\frac{\theta_{2}}{2\pi}\right)+1+\sqrt{r^{2}-1} \\ \\ \theta_{2} & = & \arccos\left(\frac{-2\sqrt{r^{2}-1}}{r^{2}}\right). \end{array} $$
(16)

Therefore, based on (15) and (16), the probability of correct demodulation for QAM-4 modulation p 4 is

$$\begin{array}{rll} p_{4} &=& \sum\limits_{s_{f}\in\{\pm1\pm j\}}\frac{1}{4}\frac{Area_{s_{f}}}{\pi r^{2}} \\ &=& \begin{cases} 1, \ r\leq1 \\ \frac{1}{\pi r^{2}}\left[\pi r^{2}\left(\frac{2\pi-2\theta_{1}}{2\pi}\right)+2\sqrt{r^{2}-1}\right],{} \sqrt{2}\geq r>1 \\ \frac{1}{\pi r^{2}}\left[\pi r^{2}\left(\frac{\theta_{2}}{2\pi}\right){}+{}1{}+{}\sqrt{r^{2}-1}\right], r>\sqrt{2} \\ \end{cases} \\ \theta_{1} &=& \arccos\left(\frac{2-r^{2}}{r^{2}}\right) \\ \theta_{2} &=& \arccos\left(\frac{-2\sqrt{r^{2}-1}}{r^{2}}\right). \end{array} $$
(17)

This corresponds to (9).

Appendix C: Proof of Probability of Correct Demodulation for QAM-8 Modulation

Figure 22 illustrates the area of correct demodulation for QAM-8 modulation. The transmitted symbol s f is randomly chosen from {±1±;j,±3±j} or {(±1,±1),(±3,±1)}. When \(1< r\leq \sqrt {2}\) in Fig. 22a, if s f ∈{±1±j}, the area of correct demodulation \(Area_{s_{f}}\) is

$$\begin{array}{rll} Area_{s_{f}} & = & \pi r^{2}-\pi r^{2}\left(\frac{3\theta_{1}}{2\pi}\right)+3\sqrt{r^{2}-1} \\ \\ \theta_{1} &=& \arccos\left(\frac{2-r^{2}}{r^{2}}\right). \end{array} $$
(18)

If s f ∈{±3±j}, the area of correct demodulation \(Area_{s_{f}}\) is similar to that in QAM-4 modulation, and \(Area_{s_{f}}\) is

$$\begin{array}{rll} Area_{s_{f}} & = & \pi r^{2}-\pi r^{2}\left(\frac{2\theta_{1}}{2\pi}\right)+2\sqrt{r^{2}-1} \\ \\ \theta_{1}& = &\arccos\left(\frac{2-r^{2}}{r^{2}}\right). \end{array} $$
(19)

Moreover, when \(r>\sqrt {2}\) in Fig. 22b, if s f ∈{±1±j}, the area of correct demodulation \(Area_{s_{f}}\) is

$$\begin{array}{rll} Area_{s_{f}} & = & \pi r^{2}\left(\frac{\theta_{2}}{2\pi}\right)+\frac{3}{2}\left(1+\sqrt{r^{2}-1}\right) \\ \\ \theta_{2} & = & \arccos\left(\frac{r^{2}-2}{r^{2}}\right). \end{array} $$
(20)

If s f ∈{±3±j}, the area of correct demodulation is also similar to that in QAM-4 modulation, and \(Area_{s_{f}}\) is

$$\begin{array}{rll} Area_{s_{f}}& = &\pi r^{2}\left(\frac{\theta_{2}}{2\pi}\right)+1+\sqrt{r^{2}-1} \\ \\ \theta_{3}& = &\arccos\left(\frac{-2\sqrt{r^{2}-1}}{r^{2}}\right). \end{array} $$
(21)

From (18)–(21), the probability of correct demodulation for QAM-8 modulation p 8 is

$$ \begin{array}{rll} p_{8} &=& \sum\limits_{s_{f}\in\{\pm1\pm j,\pm3\pm j\}}\frac{1}{8}\frac{Area_{s_{f}}}{\pi r^{2}} \\ &=& \begin{cases} 1, \ r\leq1 \\ \frac{1}{\pi r^{2}}\left[\pi r^{2}\left(\frac{2\pi-2\theta_{1}}{2\pi}\right)+2\sqrt{r^{2}-1}\right], \ \sqrt{2}\geq r>1 \\ \frac{1}{\pi r^{2}}\left[\pi r^{2}\left(\frac{\theta_{2}}{2\pi}\right)+1+\sqrt{r^{2}-1}\right], \ r>\sqrt{2} \\ \end{cases} \\ \end{array} $$
$$\begin{array}{rll} \theta_{1} &=& \arccos\left(\frac{2-r^{2}}{r^{2}}\right) \\ [6pt] \theta_{2} &=& \arccos\left(\frac{-2\sqrt{r^{2}-1}}{r^{2}}\right). \end{array} $$
(22)

This corresponds to (10).

Figure 22
figure 22

Areas of concern to calculate p 8 for QAM-8 modulation, including (a) \(1< r\leq \sqrt {2}\) and (b) \(r>\sqrt {2}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Kung, TL. & Parhi, K.K. Impulse Noise Correction in OFDM Systems. J Sign Process Syst 74, 245–262 (2014). https://doi.org/10.1007/s11265-013-0782-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0782-y

Keywords

Navigation