Skip to main content
Log in

Benchmarking Object Detection Robustness against Real-World Corruptions

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

With the rapid recent development, deep learning based object detection techniques have been applied to various real-world software systems, especially in safety-critical applications like autonomous driving. However, few studies are conducted to systematically investigate the robustness of state-of-the-art object detection techniques against real-world image corruptions and yet few benchmarks of object detection methods in terms of robustness are publicly available. To bridge this gap, we initiate to create a public benchmark of COCO-C and BDD100K-C, composed of sixteen real-world corruptions according to the real damages in camera sensors and image pipeline. Based on that, we further perform a systematic empirical study and evaluation of twelve representative object detectors covering three different categories of architectures (i.e., two-stage, one-stage, transformer architectures) to identify the current challenges and explore future opportunities. Our key findings include (1) the proposed real-world corruptions pose a threat to object detectors, especially for the corruptions involving colour changes, (2) a detector with a high mAP may still be vulnerable to real-world corruptions, (3) if there are potential cross-scenarios applications, the one-stage detectors are recommended, (4) when object detection architectures suffer from real-world corruptions, the effectiveness of existing robustness enhancement methods is limited, and (5) two-stage and one-stage object detection architectures are more likely to miss detect objects compared with transformer-based methods against the proposed corruptions. Our results highlight the need for designing robust object detection methods against real-world corruption and the need for more effective robustness enhancement methods for existing object detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://sites.google.com/view/real-worldbenchmark.

  2. http://www.robustvision.net/.

  3. According to Liu et al. (2020) the bounding box is considered correct only if the error rate \(err^d_{O_0} < 0.5\).

References

  • Antilogus, P., Astier, P., Doherty, P., Guyonnet, A., & Regnault, N. (2014). The brighter-fatter effect and pixel correlations in ccd sensors. J. Instrum., 9(03), C03048.

    Article  Google Scholar 

  • Bolya, D., Zhou, C., Xiao, F., & Lee, Y. J. (2019). YOLACT: Real-time instance segmentation. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019 (pp. 9156–9165). IEEE. https://doi.org/10.1109/ICCV.2019.00925

  • Bruneton, E., & Neyret, F. (2008). Precomputed atmospheric scattering. In Computer graphics forum, Wiley Online Library, (Vol. 27, pp. 1079–1086).

  • Buades, A., Coll, B., & Morel, J. (2005). A non-local algorithm for image denoising. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA (pp. 60–65). IEEE Computer Society. https://doi.org/10.1109/CVPR.2005.38

  • Cai, Z., & Vasconcelos, N. (2019). Cascade R-CNN: High quality object detection and instance segmentation. CoRR, arXiv:1906.09756

  • Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. In Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (Eds.), Computer vision - ECCV 2020 - 16th European conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, Springer, Lecture Notes in Computer Science (Vol. 12346, pp. 213–229). https://doi.org/10.1007/978-3-030-58452-8_13

  • Celestre, R., Rosenberger, M., & Notni, G. (2016). A novel algorithm for bad pixel detection and correction to improve quality and stability of geometric measurements. Journal of Physics: Conference Series, 772, 012002.

    Google Scholar 

  • Chandra, M., Agarwal, D., & Bansal, A. (2016). Image transmission through wireless channel: A review. In 2016 IEEE 1st international conference on power electronics, intelligent control and energy systems (ICPEICES) (pp. 1–4). IEEE.

  • Chaves-González, J. M., Vega-Rodríguez, M. A., Gómez-Pulido, J. A., & Sánchez-Pérez, J. M. (2010). Detecting skin in face recognition systems: A colour spaces study. Digital Signal Processing, 20(3), 806–823.

    Article  Google Scholar 

  • Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang, W., Loy, C. C., & Lin, D. (2019a). Hybrid task cascade for instance segmentation. In IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019 (pp. 4974–4983). Computer Vision Foundation/IEEE. https://doi.org/10.1109/CVPR.2019.00511, arXiv:1901.07518

  • Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., et al. (2019b). Mmdetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155

  • CNN. (2016). Who’s responsible when an autonomous car crashes? http://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html

  • Dong, Y., Fu, Q., Yang, X., Pang, T., Su, H., Xiao, Z., & Zhu, J. (2020). Benchmarking adversarial robustness on image classification. In 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020 (pp 318–328). Computer Vision Foundation/IEEE. https://doi.org/10.1109/CVPR42600.2020.00040, https://ieeexplore.ieee.org/document/9157625

  • Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019 (pp 6568–6577). IEEE. https://doi.org/10.1109/ICCV.2019.00667

  • Elharrouss, O., Almaadeed, N., & Al-Máadeed, S. (2021). A review of video surveillance systems. The Journal of Visual Communication and Image Representation, 77, 103116. https://doi.org/10.1016/j.jvcir.2021.103116

    Article  Google Scholar 

  • Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014a). Scalable object detection using deep neural networks. In 2014 IEEE conference on computer vision and pattern recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014 (pp 2155–2162). IEEE Computer Society. https://doi.org/10.1109/CVPR.2014.276

  • Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014b). Scalable object detection using deep neural networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014 (pp 2155–2162). IEEE Computer Society. https://doi.org/10.1109/CVPR.2014.276

  • Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Gläser, C., Timm, F., Wiesbeck, W., & Dietmayer, K. (2021). Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. The IEEE Transactions on Intelligent Transportation Systems, 22(3), 1341–1360. https://doi.org/10.1109/TITS.2020.2972974

    Article  Google Scholar 

  • Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Trans Computers, 22(1), 67–92. https://doi.org/10.1109/T-C.1973.223602

    Article  Google Scholar 

  • Fossum, E. R. (1997). Cmos image sensors: Electronic camera-on-a-chip. IEEE Transactions on Electron Devices, 44(10), 1689–1698. https://doi.org/10.1109/16.628824

    Article  Google Scholar 

  • Garcia, J., Feng, Y., Shen, J., Almanee, S., Xia, Y., & Chen, Q. A. (2020). A comprehensive study of autonomous vehicle bugs. In Rothermel, G., & Bae, D. (Eds.), ICSE’20: 42nd international conference on software engineering, Seoul, South Korea, 27 June–19 July, 2020 (pp. 385–396). ACM. https://doi.org/10.1145/3377811.3380397

  • Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., & Brendel, W. (2019). Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In 7th international conference on learning representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, https://openreview.net/forum?id=Bygh9j09KX

  • Guo, Q., Strauss, K., Ceze, L., & Malvar, H. S. (2016). High-density image storage using approximate memory cells. In Proceedings of the twenty-first international conference on architectural support for programming languages and operating systems, Association for Computing Machinery, New York, NY, USA, ASPLOS’16 (pp. 413–426). https://doi.org/10.1145/2872362.2872413

  • He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask r-cnn. In 2017 IEEE international conference on computer vision (ICCV).

  • Hendrycks, D., & Dietterich, T. G. (2019). Benchmarking neural network robustness to common corruptions and perturbations. In 7th international conference on learning representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019, OpenReview.net, https://openreview.net/forum?id=HJz6tiCqYm

  • Islam, M.J., Nguyen, G., Pan, R., & Rajan, H. (2019). A comprehensive study on deep learning bug characteristics. In Dumas, M., Pfahl, D., Apel, S., & Russo, A. (Eds.), Proceedings of the ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26–30, 2019 (pp. 510–520). ACM. https://doi.org/10.1145/3338906.3338955

  • Kamann, C., & Rother, C. (2021). Benchmarking the robustness of semantic segmentation models with respect to common corruptions. International Journal of Computer Vision, 129(2), 462–483. https://doi.org/10.1007/s11263-020-01383-2

    Article  Google Scholar 

  • Kawamura, S. (1998). Capturing images with digital still cameras. IEEE Micro, 18(6), 14–19. https://doi.org/10.1109/40.743680

    Article  Google Scholar 

  • Kim, K., Kim, J., Song, S., Choi, J. H., Joo, C., & Lee, J. S. (2021). Light lies: Optical adversarial attack. arXiv preprint arXiv:2106.09908

  • Lin, H. Y., Gu, K. D., & Chang, C. H. (2012). Photo-consistent synthesis of motion blur and depth-of-field effects with a real camera model. Image and Vision Computing, 30(9), 605–618.

    Article  Google Scholar 

  • Lin, T., Goyal, P., Girshick, R. B., He, K., & Dollár, P. (2017). Focal loss for dense object detection. CoRR, arXiv:1708.02002

  • Lin, T., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C.L. (2014). Microsoft COCO: Common objects in context. In Fleet, D. J., Pajdla, T., Schiele, B., & Tuytelaars, T. (Eds.), Computer Vision—ECCV 2014—13th European conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V, Springer, Lecture Notes in Computer Science (Vol. 8693, pp. 740–755). https://doi.org/10.1007/978-3-319-10602-1_48

  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  • Liu, J., Wu, C., Wang, Y., Xu, Q., Zhou, Y., Huang, H., Wang, C., Cai, S., Ding, Y., Fan, H., & Wang, J. (2019a). Learning raw image denoising with bayer pattern unification and bayer preserving augmentation. In IEEE conference on computer vision and pattern recognition workshops, CVPR workshops 2019, Long Beach, CA, USA, June 16–20, 2019. Computer Vision Foundation/IEEE (pp. 2070–2077). https://doi.org/10.1109/CVPRW.2019.00259, arXiv:1904.12945

  • Liu, L., Li, H., & Gruteser, M. (2019b). Edge assisted real-time object detection for mobile augmented reality. In Brewster, S. A., Fitzpatrick, G., Cox, A. L., Kostakos, V. (Eds.), The 25th annual international conference on mobile computing and networking, MobiCom 2019, Los Cabos, Mexico, October 21–25, 2019 (pp. 25:1–25:16). ACM. https://doi.org/10.1145/3300061.3300116

  • Liu, L., Ouyang, W., Wang, X., Fieguth, P. W., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep learning for generic object detection: A survey. International Journal of Computer Vision, 128(2), 261–318. https://doi.org/10.1007/s11263-019-01247-4

    Article  Google Scholar 

  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., & Berg, A. C. (2016). SSD: Single shot multibox detector. In Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), Computer vision - ECCV 2016 - 14th European conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I, Springer, Lecture Notes in Computer Science (Vol. 9905, pp. 21–37). https://doi.org/10.1007/978-3-319-46448-0_2

  • Liu, Y., Ma, Z., Liu, X., Ma, S., & Ren, K. (2022). Privacy-preserving object detection for medical images with faster R-CNN. IEEE Transactions on Information Forensics and Security, 17, 69–84. https://doi.org/10.1109/TIFS.2019.2946476

    Article  Google Scholar 

  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece, September 20–25, 1999 (pp. 1150–1157). IEEE Computer Society. https://doi.org/10.1109/ICCV.1999.790410

  • Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge, M., & Brendel, W. (2019). Benchmarking robustness in object detection: Autonomous driving when winter is coming. CoRR, arXiv:1907.07484

  • Minh, T. N., Sinn, M., Lam, H. T., & Wistuba, M. (2018). Automated image data preprocessing with deep reinforcement learning. arXiv preprint arXiv:1806.05886

  • Pathak, A. R., Pandey, M., & Rautaray, S. (2018). Application of deep learning for object detection. Procedia Computer Science, 132, 1706–1717. https://doi.org/10.1016/j.procs.2018.05.144

    Article  Google Scholar 

  • Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar, Romeny B., Zimmerman, J. B., & Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355–368. https://doi.org/10.1016/S0734-189X(87)80186-X

    Article  Google Scholar 

  • Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. E. P., Shyu, M., Chen, S., & Iyengar, S. S. (2019). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys, 51(5), 92:1-92:36. https://doi.org/10.1145/3234150

    Article  Google Scholar 

  • Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-Quaderi, G. D., & Shoyaib, M. (2016). An adaptive gamma correction for image enhancement. EURASIP Journal on Image and Video Processing, 1, 1–13.

    Google Scholar 

  • Rebuffi, S. A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., & Mann, T. A. (2021). Data augmentation can improve robustness. Neural Information Processing Systems, 34, 29935–29948.

    Google Scholar 

  • Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016 (pp. 779–788). IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.91

  • Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. CoRR, arXiv:1804.02767

  • Ren, S., He, K., Girshick, R. B., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. CoRR, arXiv:1506.01497

  • Schwartz, E., Giryes, R., & Bronstein, A. M. (2019). Deepisp: Toward learning an end-to-end image processing pipeline. IEEE Transactions on Image Processing, 28(2), 912–923. https://doi.org/10.1109/TIP.2018.2872858

    Article  MathSciNet  Google Scholar 

  • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). Overfeat: Integrated recognition, localization and detection using convolutional networks. In Bengio, Y., LeCun, Y. (Eds.), 2nd international conference on learning representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings, arXiv:1312.6229

  • She, Q., Feng, F., Hao, X., Yang, Q., Lan, C., Lomonaco, V., Shi, X., Wang, Z., Guo, Y., Zhang, Y., Qiao, F., & Chan, R.H.M. (2020). Openloris-object: A robotic vision dataset and benchmark for lifelong deep learning. In 2020 IEEE international conference on robotics and automation, ICRA 2020, Paris, France, May 31–August 31, 2020 (pp. 4767–4773). IEEE. https://doi.org/10.1109/ICRA40945.2020.9196887

  • Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430–444. https://doi.org/10.1109/TIP.2005.859378

    Article  Google Scholar 

  • Sheikh, H. R., Bovik, A. C., & de Veciana, G. (2005). An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14(12), 2117–2128. https://doi.org/10.1109/TIP.2005.859389

    Article  Google Scholar 

  • Shekar, A. K., Gou, L., Ren, L., & Wendt, A. (2021). Label-free robustness estimation of object detection cnns for autonomous driving applications. International Journal of Computer Vision, 129, 1185–1201.

    Article  Google Scholar 

  • Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  Google Scholar 

  • Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.

    Article  Google Scholar 

  • Silva, V. D., Chesnokov, V., & Larkin, D. (2016). A novel adaptive shading correction algorithm for camera systems. In Digital Photography and Mobile Imaging, https://api.semanticscholar.org/CorpusID:36655918

  • Sindagi, V. A., & Patel, V. M. (2018). A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognition Letters, 107, 3–16. https://doi.org/10.1016/j.patrec.2017.07.007

    Article  Google Scholar 

  • Sobh, I., Hamed, A., Kumar, V. R., & Yogamani, S. (2021). Adversarial attacks on multi-task visual perception for autonomous driving. arXiv preprint arXiv:2107.07449

  • Sun, Y., Wang, X., & Tang, X. (2015). Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2892–2900)

  • Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection. In Burges, C. J. C., Bottou L, Ghahramani, Z., & Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States (pp. 2553–2561). https://proceedings.neurips.cc/paper/2013/hash/f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html

  • Tian, Y., Pei, K., Jana, S., & Ray, B. (2018). Deeptest: automated testing of deep-neural-network-driven autonomous cars. In Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (Eds.), Proceedings of the 40th international conference on software engineering, ICSE 2018, Gothenburg, Sweden, May 27–June 03, 2018 (pp. 303–314). ACM. https://doi.org/10.1145/3180155.3180220

  • Times, T. N. Y. (2017). Tesal’s self-driving system cleared in deadly crash. https://www.nytimes.com/2017/01/19/business/tesla-model-s-autopilot-fatal-crash.html

  • Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., & McDaniel, P. (2018). Ensemble adversarial training: Attacks and defenses. In International conference on learning representations, https://openreview.net/forum?id=rkZvSe-RZ

  • Uricar, M., Sistu, G., Rashed, H., Vobecky, A., Kumar, V.R., Krizek, P., Burger, F., & Yogamani, S. (2021). Let’s get dirty: Gan based data augmentation for camera lens soiling detection in autonomous driving. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV) (pp. 766–775)

  • Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93(5), 1328–1340.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  • Wu, B., Iandola, F.N., Jin, P.H., & Keutzer, K. (2017). Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In 2017 IEEE conference on computer vision and pattern recognition workshops, CVPR workshops 2017, Honolulu, HI, USA, July 21–26, 2017 (pp. 446–454). IEEE Computer Society. https://doi.org/10.1109/CVPRW.2017.60

  • Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., & Yuille, A. (2017). Adversarial examples for semantic segmentation and object detection. In Proceedings of the IEEE international conference on computer vision (pp. 1369–1378).

  • Ying, J., He, Y., & Zhou, Z. (2009). Analysis on laser spot locating precision affected by cmos sensor fill factor in laser warning system. In 2009 9th international conference on electronic measurement & instruments (pp. 2-202–2-206). https://doi.org/10.1109/ICEMI.2009.5274607

  • Zhang, Y., Dong, B., & Heide, F. (2022). All you need is raw: Defending against adversarial attacks with camera image pipelines. In European conference on computer vision (pp. 323–343). Springer.

  • Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random erasing data augmentation. In: Proceedings of the AAAI conference on artificial intelligence, (Vol. 34, pp.13001–13008).

  • Zhou, J., & Glotzbach, J. (2007). Image pipeline tuning for digital cameras. In 2007 IEEE international symposium on consumer electronics (pp. 1–4). IEEE. https://doi.org/10.1109/ISCE.2007.4382143

  • Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2021). Deformable DETR: Deformable transformers for end-to-end object detection. In 9th international conference on learning representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021, OpenReview.net, https://openreview.net/forum?id=gZ9hCDWe6ke

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful comments. This work is supported partially by the National Natural Science Foundation of China (61932012, 62141215, 62372228), Science, Technology, and Innovation Commission of Shenzhen Municipality (CJGJZD20200617103001003), Canada CIFAR AI Chairs Program, the Natural Sciences and Engineering Research Council of Canada (NSERC No.RGPIN-2021-02549, No.RGPAS-2021-00034, No.DGECR-2021-00019), as well as JST-Mirai Program Grant No.JPMJMI20B8, JSPS KAKENHI Grant No.JP21H04877, No.JP23H03372, JP24K02920, and also with the support from TIER IV, Inc. and Autoware Foundation. Chunrong Fang, Jia Liu and Zhenyu Chen are the corresponding authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunrong Fang, Jia Liu or Zhenyu Chen.

Additional information

Communicated by Oliver Zendel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, Z., Ma, L. et al. Benchmarking Object Detection Robustness against Real-World Corruptions. Int J Comput Vis (2024). https://doi.org/10.1007/s11263-024-02096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11263-024-02096-6

Keywords

Navigation