Skip to main content
Log in

Learning the spatiotemporal variability in longitudinal shape data sets

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we propose a generative statistical model to learn the spatiotemporal variability in longitudinal shape data sets, which contain repeated observations of a set of objects or individuals over time. From all the short-term sequences of individual data, the method estimates a long-term normative scenario of shape changes and a tubular coordinate system around this trajectory. Each individual data sequence is therefore (i) mapped onto a specific portion of the trajectory accounting for differences in pace of progression across individuals, and (ii) shifted in the shape space to account for intrinsic shape differences across individuals that are independent of the progression of the observed process. The parameters of the model are estimated using a stochastic approximation of the expectation–maximization algorithm. The proposed approach is validated on a simulated data set, illustrated on the analysis of facial expression in video sequences, and applied to the modeling of the progressive atrophy of the hippocampus in Alzheimer’s disease patients. These experiments show that one can use the method to reconstruct data at the precision of the noise, to highlight significant factors that may modulate the progression, and to simulate entirely synthetic longitudinal data sets reproducing the variability of the observed process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Available at: https://surfer.nmr.mgh.harvard.edu.

  2. Available at: http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27.

  3. Available at: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

  4. Available at: https://brainder.org.

  5. Available at: www.paraview.org.

  6. Available at: https://github.com/bing-jian/gmmreg.

References

  • Abdi, H. (2003). Partial least square regression (pls regression). Encyclopedia for Research Methods for the Social Sciences, 6(4), 792–795.

    Google Scholar 

  • Ahrens, J., Geveci, B., & Law, C. (2005). Paraview: An end-user tool for large data visualization. The Visualization Handbook, 717, 863.

    Google Scholar 

  • Allassonnière, S., Durrleman, S., & Kuhn, E. (2015). Bayesian mixed effect atlas estimation with a diffeomorphic deformation model. SIAM Journal on Imaging Science, 8, 1367–1395.

    Article  MathSciNet  MATH  Google Scholar 

  • Amor, B. B., Drira, H., Berretti, S., Daoudi, M., & Srivastava, A. (2014). 4-d facial expression recognition by learning geometric deformations. IEEE Transactions on Cybernetics, 44(12), 2443–2457.

    Article  Google Scholar 

  • Atchade, Y. F. (2006). An adaptive version for the metropolis adjusted langevin algorithm with a truncated drift. Methodology and Computing in applied Probability, 8(2), 235–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee, M., Chakraborty, R., Ofori, E., Okun, M. S., Viallancourt, D. E., & Vemuri, B. C. (2016) A nonlinear regression technique for manifold valued data with applications to medical image analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4424–4432)

  • Beg, M., Miller, M., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV, 61(2), 139–157.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

    MathSciNet  MATH  Google Scholar 

  • Bilgel, M., Prince, J. L., Wong, D. F., Resnick, S. M., & Jedynak, B. M. (2016). A multivariate nonlinear mixed effects model for longitudinal image analysis: Application to amyloid imaging. Neuroimage, 134, 658–670.

    Article  Google Scholar 

  • Bône, A., Colliot, O., & Durrleman, S. (2018). Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9271–9280)

  • Bône, A., Louis, M., Colliot, O., Durrleman, S., Initiative, A. D. N., et al. (2019). Learning low-dimensional representations of shape data sets with diffeomorphic autoencoders. In International conference on information processing in medical imaging (pp. 195–207). Springer.

  • Chakraborty, R., Banerjee, M., & Vemuri, B. C. (2017). Statistics on the space of trajectories for longitudinal data analysis. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) (pp. 999–1002). IEEE.

  • Charlier, B., Feydy, J., Glaunès, J. A., & Trouvé, A. (2017). An efficient kernel product for automatic differentiation libraries, with applications to measure transport.

  • Charon, N., Charlier, B., Glaunès, J., Gori, P., & Roussillon, P. (2020). Fidelity metrics between curves and surfaces: Currents, varifolds, and normal cycles. In Riemannian geometric statistics in medical image analysis (pp. 441–477). Elsevier.

  • Christensen, G. E., Rabbitt, R. D., & Miller, M. I. (1996). Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10), 1435–1447.

    Article  Google Scholar 

  • Cury, C., Durrleman, S., Cash, D. M., Lorenzi, M., Nicholas, J. M., Bocchetta, M., et al. (2019). Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the genfi cohort. NeuroImage, 188, 282–290.

    Article  Google Scholar 

  • Debavelaere, V., Bône, A., Durrleman, S., Allassonnière, S., Initiative, A.D.N., et al. (2019). Clustering of longitudinal shape data sets using mixture of separate or branching trajectories. In International conference on medical image computing and computer-assisted intervention (pp. 66–74). Springer.

  • Delyon, B., Lavielle, M., & Moulines, E. (1999). Convergence of a stochastic approximation version of the em algorithm. Annals of Statistics, 27, 94–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39, 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrleman, S., Allassonnière, S., & Joshi, S. (2013a). Sparse adaptive parameterization of variability in image ensembles. IJCV, 101(1), 161–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., & Ayache, N. (2013b). Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. International Journal of Computer Vision, 103(1), 22–59. https://doi.org/10.1007/s11263-012-0592-x.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrleman, S., Prastawa, M., Charon, N., Korenberg, J. R., Joshi, S., Gerig, G., et al. (2014). Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage, 101, 35–49.

    Article  Google Scholar 

  • Fang, T., Zhao, X., Shah, S. K., & Kakadiaris, I. A. (2011) 4d facial expression recognition. In 2011 IEEE international conference on computer vision workshops (ICCV workshops) (pp. 1594–1601). IEEE (2011).

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055.

    Article  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  Google Scholar 

  • Fishbaugh, J., Prastawa, M., Gerig, G., & Durrleman, S. (2014). Geodesic regression of image and shape data for improved modeling of 4D trajectories. In ISBI 2014—11th international symposium on biomedical imaging (pp. 385–388)

  • Fletcher, T. (2013). Geodesic regression and the theory of least squares on riemannian manifolds. IJCV, 105(2), 171–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Gori, P., Colliot, O., Marrakchi-Kacem, L., Worbe, Y., Poupon, C., Hartmann, A., et al. (2017). A Bayesian framework for joint morphometry of surface and curve meshes in multi-object complexes. Medical Image Analysis, 35, 458–474. https://doi.org/10.1016/j.media.2016.08.011.

    Article  Google Scholar 

  • Hinkle, J., Muralidharan, P., Fletcher, P. T., & Joshi, S. (2012). Polynomial regression on Riemannian manifolds. In: European conference on computer vision (pp. 1–14). Springer.

  • Hirsch, M. W. (2012). Differential topology (Vol. 33). Berlin: Springer.

    Google Scholar 

  • Hyvärinen, A., Karhunen, J., & Oja, E. (2004). Independent component analysis (Vol. 46). Berlin: Wiley.

    Google Scholar 

  • Jian, B., & Vemuri, B. C. (2011). Robust point set registration using Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1633–1645.

    Article  Google Scholar 

  • Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2), 81–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, H. J., Adluru, N., Suri, H., Vemuri, B. C., Johnson, S. C., Singh, V. (2017). Riemannian nonlinear mixed effects models: Analyzing longitudinal deformations in neuroimaging. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).

  • Koval, I., Schiratti, J. B., Routier, A., Bacci, M., Colliot, O., Allassonnière, S., Durrleman, S., Initiative, A. D. N., et al. (2017). Statistical learning of spatiotemporal patterns from longitudinal manifold-valued networks. In International conference on medical image computing and computer-assisted intervention (pp. 451–459). Springer.

  • Kuhn, E., & Lavielle, M. (2004). Coupling a stochastic approximation version of em with an mcmc procedure. ESAIM: Probability and Statistics, 8, 115–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, D. C., & Nocedal, J. (1989). On the limited memory bfgs method for large scale optimization. Mathematical Programming, 45(1–3), 503–528.

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenzi, M., Ayache, N., Frisoni, G., & Pennec, X. (2010). 4D registration of serial brain’s MR images: A robust measure of changes applied to Alzheimer’s disease. Spatio Temporal Image Analysis Workshop (STIA), MICCAI.

  • Lorenzi, M., Ayache, N., & Pennec, X. (2011). Schild’s ladder for the parallel transport of deformations in time series of images. In Biennial international conference on information processing in medical imaging (pp. 463–474). Springer.

  • Louis, M., Bône, A., Charlier, B., & Durrleman, S. (2017). Parallel transport in shape analysis: A scalable numerical scheme. In International conference on geometric science of information (pp. 29–37). Springer.

  • Louis, M., Charlier, B., Jusselin, P., Pal, S., & Durrleman, S. (2018). A fanning scheme for the parallel transport along geodesics on riemannian manifolds. SIAM Journal on Numerical Analysis, 56(4), 2563–2584.

    Article  MathSciNet  MATH  Google Scholar 

  • Manasse, F., & Misner, C. W. (1963). Fermi normal coordinates and some basic concepts in differential geometry. Journal of Mathematical Physics, 4(6), 735–745.

    Article  MathSciNet  MATH  Google Scholar 

  • Marin, J. M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22(6), 1167–1180.

    Article  MathSciNet  MATH  Google Scholar 

  • Marinescu, R. V., Eshaghi, A., Lorenzi, M., Young, A. L., Oxtoby, N. P., Garbarino, S., Shakespeare, T. J., Crutch, S. J., Alexander, D. C., Initiative, A. D. N., et al. (2017) A vertex clustering model for disease progression: Application to cortical thickness images. In International conference on information processing in medical imaging (pp. 134–145). Springer.

  • Miller, M. I., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228.

    Article  MathSciNet  Google Scholar 

  • Muralidharan, P., & Fletcher, P. T. (2012). Sasaki metrics for analysis of longitudinal data on manifolds. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1027–1034). IEEE.

  • Nader, C. A., Ayache, N., Robert, P., & Lorenzi, M. (2019). Monotonic Gaussian process for spatio-temporal trajectory separation in brain imaging data. arXiv preprint arXiv:1902.10952.

  • Niethammer, M., Huang, Y., & Vialard, F. X. (2011). Geodesic regression for image time-series. In International conference on medical image computing and computer-assisted intervention (pp. 655–662). Springer.

  • Pennec, X. (2006). Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1), 127–154.

    Article  MathSciNet  Google Scholar 

  • Pennec, X., Fillard, P., & Ayache, N. (2006). A riemannian framework for tensor computing. International Journal of Computer Vision, 66(1), 41–66.

    Article  MATH  Google Scholar 

  • Schiratti, J. B., Allassonnière, S., Colliot, O., & Durrleman, S. (2015). Learning spatiotemporal trajectories from manifold-valued longitudinal data. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett (Eds.), NIPS 28, (pp. 2404–2412). Curran Associates, Inc.

  • Schiratti, J. B., Allassonniere, S., Colliot, O., & Durrleman, S. (2017). A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. The Journal of Machine Learning Research, 18(1), 4840–4872.

    MathSciNet  MATH  Google Scholar 

  • Singh, N., Hinkle, J., Joshi, S., & Fletcher, P. T. (2016). Hierarchical geodesic models in diffeomorphisms. IJCV, 117(1), 70–92.

    Article  MathSciNet  MATH  Google Scholar 

  • Stern, Y. (2006). Cognitive reserve and alzheimer disease. Alzheimer Disease and Associated Disorders, 20(2), 112–117.

    Article  Google Scholar 

  • Su, J., Kurtek, S., Klassen, E., Srivastava, A., et al. (2014a). Statistical analysis of trajectories on riemannian manifolds: Bird migration, hurricane tracking and video surveillance. The Annals of Applied Statistics, 8(1), 530–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, J., Srivastava, A., de Souza, F. D., & Sarkar, S. (2014b). Rate-invariant analysis of trajectories on Riemannian manifolds with application in visual speech recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 620–627).

  • Sun, Y., & Yin, L. (2008). Facial expression recognition based on 3d dynamic range model sequences. In European conference on computer vision (pp. 58–71). Springer.

  • Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In Information processing in medical imaging (pp. 1–5). Springer.

  • Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., et al. (2009). Bayesian analysis of neuroimaging data in fsl. Neuroimage, 45(1), S173–S186.

    Article  Google Scholar 

  • Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3d dynamic facial expression database. In: 8th IEEE international conference on automatic face and gesture recognition, 2008. FG’08 (pp. 1–6). IEEE.

  • Younes, L. (2007). Jacobi fields in groups of diffeomorphisms and applications. Quarterly of Applied Mathematics, 65(1), 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Younes, L. (2010). Shapes and diffeomorphisms. In Applied mathematical sciences. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Zhang, M., & Fletcher, P. T. (2015). Finite-dimensional lie algebras for fast diffeomorphic image registration. In: International conference on information processing in medical imaging (pp. 249–260). Springer.

  • Zhang, M., Singh, N., & Fletcher, P. T. (2013). Bayesian estimation of regularization and atlas building in diffeomorphic image registration. IPMI, 23, 37–48.

    Google Scholar 

Download references

Acknowledgements

The research leading to this publication has been funded in part by the European Research Council (ERC) under grant agreement No 678304 (LEASP), European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 666992 (EuroPOND) and No 826421 (TVB-Cloud), and the program “Investissements d’ d’avenir” ANR-10-IAIHU-06 (IHU ICM) and ANR-19-P3IA-0001 (PRAIRIE 3IA Institute). The facial expression data set at the basis of Section 5.2 was built and shared by the Binghamton University. The authors warmly thank Pr. Lijun Yin for granting data access, and Peng Liu for his help in downloading the data set. Regarding Section 5.3, data collection and sharing was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense Award No. W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research and Development, LLC.; Johnson & Johnson Pharmaceutical Research and Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Alexandre Bône.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data used in preparation of this article were partly obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: adni.loni.usc.edu.

Meshes represented as currents

Meshes represented as currents

The theory of currents has been introduced in Vaillant and Glaunès (2005), and is used in this paper to define a distance metric between pairs of meshes without any assumption on their topology, and in particular without assuming point-to-point correspondence. See also Charon et al. (2020) for more details.

1.1 A.1 Continuous theory

Let y be a surface mesh, that we represent as an infinite set of tuples (xn(x)) where x is a point of \(\mathbb {R}^3\), and n(x) the normal vector of y at this point. Let \(g_\mathcal {E}: \mathbb {R}^3 \times \mathbb {R}^3 \rightarrow \mathbb {R}\) be a positive-definite kernel operator, and \(\mathcal {E}\) the associated reproducing kernel Hilbert space.

We define the current transform \(\mathcal {C}(y):\mathbb {R}^3\rightarrow \mathbb {R}^3 \in \mathcal {E}\) of y as:

$$\begin{aligned} \mathcal {C}(y)(.) = \int _y g_\mathcal {E}(x, .) \cdot n(x) \cdot d\sigma (x) \end{aligned}$$

where \(d \sigma (x)\) denotes an infinitesimal surface element of y. The inner product of \(\mathcal {E}\) on currents therefore writes:

$$\begin{aligned} \big \langle \mathcal {C}(y), \mathcal {C}(y') \big \rangle _\mathcal {E}{=} \int _y \int _{y'} n'(x')^\top \cdot g_\mathcal {E}(x, x') \cdot n(x) \cdot \sigma (x) \cdot d\sigma '(x') \end{aligned}$$

where \((.)^\top \) is the transposition operator. This inner product defines in turn a distance metric on currents:

$$\begin{aligned} d_\mathcal {E}(\mathcal {C}, \mathcal {C}') = \big \langle \mathcal {C}, \mathcal {C} \big \rangle _\mathcal {E}+ \big \langle \mathcal {C}', \mathcal {C}' \big \rangle _\mathcal {E}- 2\cdot \big \langle \mathcal {C}, \mathcal {C}' \big \rangle _\mathcal {E}. \end{aligned}$$

1.2 A.2 Practical discrete case

In practice, y is described by a finite set of T triangles in \(\mathbb {R}^3\) of centers \(c_1, \ldots , c_T\) and corresponding surface normal vectors \(n_1,\ldots , n_T\). We further assume that \(g_\mathcal {E}\) is a Gaussian kernel of radius \(\sigma _\mathcal {E}\). The current transform equation then writes:

$$\begin{aligned} \mathcal {C}(y)(x) = \sum _{k=1}^T \exp \frac{- \left\| x - c_k\right\| ^2_{\ell ^2}}{\sigma _\mathcal {E}^2}\cdot n_k \end{aligned}$$

for any \(x\in \mathbb {R}^3\). Similarly, the inner product formula becomes:

$$\begin{aligned} \Big \langle \mathcal {C}(y), \mathcal {C}(y') \Big \rangle _\mathcal {E}= \sum _{k=1}^T \sum _{l=1}^{T'} \exp \frac{- \left\| c_l' - c_k\right\| ^2_{\ell ^2}}{\sigma _\mathcal {E}^2} \cdot n_k^\top n_l' \end{aligned}$$

which fully specifies the distance metric \(d_\mathcal {E}\) that can be implemented in practice to measure the discrepancy between any pair of currents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bône, A., Colliot, O., Durrleman, S. et al. Learning the spatiotemporal variability in longitudinal shape data sets. Int J Comput Vis 128, 2873–2896 (2020). https://doi.org/10.1007/s11263-020-01343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-020-01343-w

Keywords

Navigation